

NIVI5

NV5 provides solutions that help clients develop and deliver costeffective, sustainable projects to improve lives.

Hollywood, FL

100+
Offices
Worldwide

4K+
Employees

12K+ Clients

24 ENR Top 500 Design Firms (2022)

DELIVERING SOLUTIONS FOR MODERN INFRASTRUCTURE CHALLENGES

40+ YEARS

FLORIDA INFRASTRUCTURE EXPERIENCE

10 OFFICES

Broward County – Corporate HQ Alachua County Marion County Duval County Lee County Orange County Hillsborough County Pinellas County Dade County

INFRASTRUCTURE FLORIDA

Urban and Regional Planning
Environmental / Ecological Services
Transportation + Traffic
Land Development Engineering
Urban Design + Landscape Architecture
Surveying + Mapping
Subsurface Utilities Engineering (SUE)
Construction Quality Assurance

GROWTH

Geotechnical + CMT Alternate Design Build Delivery Power & Delivery Environmental Health Sciences (EHS)

CROSS SELLING

Building Technology Geospatial Resiliency & Sustainability

NV5

Our end-to-end geospatial solutions solve the world's toughest challenges.

Resource management

Climate Change

Security

Asset management

Mobility

Public Services

Infrastructure

Environmental Resiliency

Energy

Emergency Response

Local

State & Regional

Federal

Commercial

Geospatial Practice

1300+
Worldwide
Geospatial
Professionals

Localized Contracts in All

50 sotety

Completed
Projects on all
7 Continents +

182
Countries

500K+
Software Users
Around the World

Acquire

When it comes to data acquisition, we don't dabble.

We own and operate a wide array of cutting-edge platforms and sensors to collect data globally, from space to the sea floor.

Analyze

The power to transform raw data.

Behind the scenes of our software, solutions, and services you'll find technologies like deep learning, workflow automation, and real-time data integration.

Answer

Reliable, actionable information.

- Enterprise GIS
- Digital Twin
- Systems
 Integration
- Facility & System Security
- Asset Management

NV5

In-house Data Acquisition Options

Mobile

Terrestrial

Fixed | Rotary

Backpack

UAS

Traditional Solution Services

Schematic Mapping

Route study and design corridor selection

High Accuracy Mapping - Aerial, Mobile, UAS, Terrestrial Lidar and Photogrammetry

Right of way and design mapping

Bridge Modeling

As built documentation of existing structures, bridge modifications/replacements and clearance data

Roadway Sign and Utility Clearance Modeling

Identifying location and clearance of above ground utilities and signs within a corridor

Topobathymetric Lidar

Upstream, downstream and parallel drainage underwater modeling fused with terrain model data

Rock Fracture Studies

Terrestrial/UAS acquired image and lidar data are used to model the rock face

Lidar

Latest generation Near infrared light (laser) sensors to model the earth's surface and planimetric features. Topobathymetric lidar adds green (visible) light sensors to model submerged lands/objects.

Photogrammetry

Dimensioning objects from overlapping imagery from softcopy stereo plotters to extract three dimensional planimetric and topographic features.

Orthophotos

An image representation of the surface that has been corrected for camera distortions and elevation changes in the terrain surface.

Bridge Inspection Using Airborne Thermal Infrared mapping

THE CHALLENGE

NV5

- Bridges are mandated to be inspected every 2-4 years
- There are thousands of bridges
- Federal, States, and other agencies each have their own bridge inspection routine
- Every agency has a separate department for inspection and maintenance
- Several approaches to bridge inspection

EXISTING TOOLS

N|V|5

Nondestructive Technologies (NDTs)

Remote sensing techniques include chain dragging, sounding, impact echo, ultrasonic surface wave, ground-penetrating radar, image-based techniques, and *infrared thermography*.

RESULTS AND REPORTS

STANDARDS?

NV5

Infrared Thermography

 ASTM D4788-03 defined the "standard test method for detecting delamination in bridge decks using infrared thermography in 1997-2022.

Designation: D 4788 - 03

Standard Test Method fo Detecting Delamination Thermography¹

This standard is issued under the fixed designatio original adoption or, in the case of revision, the y_{ε} superscript epsilon (ε) indicates an editorial change

1. Scope

- 1.1 This test method covers the determination of tions in portland-cement concrete bridge decks usir thermography. This test method is intended for use ε and overlaid concrete bridge decks.
- 1.2 A Precision and Bias statement has not been at this time. Therefore, this standard should not b acceptance or rejection of a material for purchasing purposes.

Note 1—This test method can be used on asphalt or concrete overlays as thick as 4 in. (100 mm).

1.3 This test method uses an imaging infrared scanner and

Designation: D 4788 - 03 (Reapproved 2007)

Standard Detecting Thermog

This standard is iss original adoption or superscript epsilon

1. Scope

- 1.1 This test method cove tions in portland-cement cor thermography. This test meth and overlaid concrete bridge
- 1.2 A Precision and Bias at this time. Therefore, this acceptance or rejection of a

Note 1—This test method can as thick as 4 in. (100 mm).

- 1.3 This test method uses video recorder, mounted on and debonded areas on b information.
- that may be prese
 3.3 The video
 areas at a suitable

Designation: D4788 - 03 (Reapproved 2013)

Standard Test Method for Detecting Delamination Thermography¹

This standard is issued under the fixed designatio original adoption or, in the case of revision, the ye superscript epsilon (ε) indicates an editorial chang

1. Scope

- 1.1 This test method covers the determination of tions in portland-cement concrete bridge decks usin thermography. This test method is intended for use o and overlaid concrete bridge decks.
- 1.2 A Precision and Bias statement has not been at this time. Therefore, this standard should not be acceptance or rejection of a material for purchasing

Note 1—This test method can be used on asphalt or concr as thick as 4 in. (100 mm).

- 1.3 This test method uses an imaging infrared sc video recorder, mounted on a vehicle, to detect dela and debonded areas on bridge decks and to r information.
- 1.4 The values stated in inch-pound units are to be as standard. The values given in parentheses are mal conversions to SI units that are provided for inform

Designation: D4788 - 03 (Reapproved 2022)

Standard Test Method for Detecting Delaminations in Bridge Decks Using Infrared Thermography¹

This standard is issued under the fixed designation D4788; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This test method covers the determination of delaminations in portland-cement concrete bridge decks using infrared thermography. This test method is intended for use on exposed and overlaid concrete bridge decks.
- 1.2 A Precision and Bias statement has not been developed at this time. Therefore, this standard should not be used for acceptance or rejection of a material for purchasing purposes.

Note 1—This test method can be used on asphalt or concrete overlays as thick as 4 in. (100 mm).

1.3 This test method uses an imaging infrared scanner and video recorder, mounted on a vehicle, to detect delaminations

2. Referenced Documents

2.1 ASTM Standards:²

D4580 Practice for Measuring Delaminations in Concrete Bridge Decks by Sounding

3. Summary of Test Method

3.1 The vehicle-mounted infrared scanner and video recorder are driven over the center of each lane of a bridge deck. The data from the scanner is recorded on video tape. Delaminations appear as white or "hot" areas on a gray or "cooler" background in the video image on a monochrome scanner system during daytime testing. During nighttime testing, the delaminations will appear as dark or "cooler" areas on a white or "warmer" background. Delaminations will appear as the

THE AIRBORNE SOLUTION

Fixed wing, low-altitude flights

- 1,000-2,000 ft above mean terrain (AMT)
- 100-130 knots nominal airspeed
- Nominal resolution = 1.5-3.0 inch
- 147 ft width x 118 ft length
- 10 frames per sec
- 80% forward overlap

1,000 ft bridge is captured in:

- ≤10 sec
- 100 frames
- Single flight line
- Turn around as needed (≤5 minutes)

40 BRIDGES IN A FEW HOURS

Flight path for surveying 40 bridges in a single mission.

ACQUISITION CONDITIONS

- Dry and warm season
- Day time 12:00-4:00 PM
- Clear sky and sunny
- 5 hrs. of direct solar loading (300 kw/m²) prior to acquisition
- No fog, no snow or water on the bridge
- Re-flights are expected

THERMAL ANOMALIES

Road Asphalt

HOW HOT IS HOT?

NV5

THERMAL VS. CURRENT METHODS RESULTS

Not detected by chain dragging

Detected by chain dragging and TIR

THERMAL INSPECTION VALIDATED #27946

TECHNICAL REPORT

N|V|5

- Intuitive and user-friendly reports
- Customizable

ACCURATE, REPEATABLE, SCALABLE

MN DOT Metro 2023 2 Bridge Deck Condition Evaluation Delamination Inspection Results

Bridge Name	Bridge Deck Area (sq ft)	Delamination Area	PCC patch Area	AC patch Area	Spall Area	Shade/debris Area	Debonding Area	Combined Area
2802	6139.8	2412.8ft² (39.3%)	0.0ft² (0.0%)	0.0ft² (0.0%)	4.0ft² (0.1%)	590.1ft² (9.6%)	0.0ft² (0.0%)	3006.9ft² (49.0%)
9389	9459.8	379.7ft² (4.0%)	0.0ft² (0.0%)	23.3ft² (0.2%)	0.0ft² (0.0%)	44.1ft² (0.5%)	0.0ft² (0.0%)	447.1ft² (4.7%)
9432	8269.5	40.7ft² (0.5%)	120.2ft² (1.5%)	0.0ft² (0.0%)	0.0ft² (0.0%)	366.7ft² (4.4%)	0.0ft² (0.0%)	527.6ft² (6.4%)
9488	5374.8	55.4ft² (1.0%)	0.0ft² (0.0%)	0.0ft² (0.0%)	0.0ft² (0.0%)	179.0ft² (3.3%)	0.0ft² (0.0%)	234.4ft² (4.4%)
9675	5562.9	9.6ft² (0.2%)	322.4ft² (5.8%)	0.0ft² (0.0%)	0.0ft² (0.0%)	401.8ft² (7.2%)	0.0ft² (0.0%)	733.8ft² (13.2%)
9860	4993.2	825.1ft² (16.5%)	5.2ft² (0.1%)	0.0ft² (0.0%)	0.0ft ² (0.0%)	22.8ft² (0.5%)	0.0ft² (0.0%)	853.1ft² (17.1%)
9868	5620.5	398.0ft² (7.1%)	0.0ft² (0.0%)	0.0ft² (0.0%)	0.0ft² (0.0%)	230.1ft² (4.1%)	0.0ft² (0.0%)	628.0ft² (11.2%)
9894	9735.0	49.3ft² (0.5%)	21.7ft² (0.2%)	0.0ft² (0.0%)	0.0ft ² (0.0%)	93.0ft² (1.0%)	0.0ft² (0.0%)	163.9ft² (1.7%)
13802	5340.5	384.8ft² (7.2%)	0.0ft² (0.0%)	0.0ft² (0.0%)	0.0ft² (0.0%)	359.8ft² (6.7%)	0.0ft² (0.0%)	744.6ft² (13.9%)
13807	6864.8	24.3ft² (0.4%)	0.0ft² (0.0%)	0.0ft² (0.0%)	0.0ft² (0.0%)	961.0ft² (14.0%)	0.0ft² (0.0%)	985.3ft² (14.4%)
13810	6211.2	7.0ft² (0.1%)	8.6ft² (0.1%)	0.0ft² (0.0%)	0.0ft² (0.0%)	371.2ft² (6.0%)	0.0ft² (0.0%)	386.9ft² (6.2%)

40 BRIDGES IN A FEW HOURS

Flight path for surveying 40 bridges in a single mission.

WHAT ABOUT CARS, TRUCKS, TRAILERS?

One frame at a time

VV5

BRIDGES WE CANNOT DO

NV5

Bridges with Obstacles

- Trusses

Multi-deck bridges

Heavy traffic

- Narrow Terrain

COMPLEMENTARY TOOLS- SINGLE BRIDGE SOLUTION

- UAVs solution- Pros
 - Single bridge
 - Similar resolution
 - Additional data
- UAVs solution- Cons
 - On-site requirement
 - Time consuming
 - Multiple passes required
 - Safety
 - Extensive coordinating

- Van-based- Pros
 - Single bridge
 - Higher resolution
- Van-based- Cons
 - Slower than traffic
 - Multiple passes required
 - safety
 - Transition time
 - Lacks automation
 - Lack geospatial reference

THANK YOU

N|V|5

Rick Wallace and the NV5 team rick.wallace@NV5.com

