

BRIDGING SYSTEMS

InQuik Bridge System Presentation

Presentation by Logan Mullaney Co-Inventor & President

Agenda

 History of InQuik – EST 2015 – 175+ bridges in service / in construction
 What is The InQuik System?
 How it reduces / eliminates

4.Case Studies
5. R&D – Technical discussion –
AASHTO LRFD 9th Edition
6. Natural Disasters

Nothing like this in the US before NOW! 2021 VIRTUAL ACCELERATED BRIDGE CONSTRUCTION CONFERENCE:

> DECEMBER, 8-10, 2021 Marie Ronda, USA FUU Control ADCO Deviador

Most Innovative ABC Bridge System Developed Outside U.S: InQuik Bridge System **History Of InQuik**

Conventional Construction methods

What is the Patented InQuik System?

Commercially In Confidence

Factory Controlled Fabrication

Abutments & Decks

Concrete poured on-site

- ✓ Place components & pour concrete
- ✓ Fully self-supporting / no propping required

- ✓ One monolithic structure after components stitched together on-site
- ✓ Local concrete contractor

Completed Bridges

Accelerated Bridge Construction

Prefabricate components in a factory without concrete

Light-weight components are easily transported

Modular components lifted into place & connected

Concrete poured on-site

InQuik Bridge	Conventional Methodology
Fast on-site construction with less trades	Longer construction time on-site
Self-supporting modular construction	Temporary supports required
Light weight bridge components (as concrete poured on- site) – small local cranage	Heavier components – larger cranage
Guaranteed concrete cover to reinforcement in factory manufacture	On-site reinforcing steel can move when fabricated on-site
Low construction risk (light weights, less construction time, reduced site labor)	Higher construction risk (longer site time, increased site labour, heavier components)
No joints in structure to allow water and salt ingress – integral bridge	Joints – water and salt ingress, reduced design life
No bearings or tie-downs – <i>integral bridge</i> = no long-term maintenance	Bearings and tie-downs = maintenance required
Pre-engineered, pre-certified, pre-fabricated via quality design and fabrication partners	Often fabricated and certified on-site
Ease of transportation (light weight components)	Heavier components – larger trucks, structural cracks can occur from transportation with pre-cast

All of these advantages lead to significantly reduced project costs of up to 50% - i.e. reduced program on site, reduced on site labor / hours and rate, minimal cranage onsite, reduced project construction risk, zero maintenance

InQuik components are designed to AASHTO LRFD Bridge Design Specification 9th Edition Verification performed by ARUP

- Truss is added to the beam
- Pre-camber welded into the beam
- Reinforcing steel increased by 30%
- Internal reinforcing structure supports the weight of the concrete so it's in a neutral state until the live load
- And no propping is required when pouring concrete onsite

ARUP

How does the InQuik system work?

- Formwork is bolted to the reinforcing cage
- Guaranteed concrete coverage
- Truss foot sits on the abutment
- Deck weight transferred to abutment
- Self-supporting during the concrete pour
- > No propping required
- > Formwork is sacrificial, however remains
- Prevents water escaping during curing
- Prevents salt ingress
- Protects concrete

US Patent No. 11053647

Integral Structure

Commercially In Confidence

Explanation & Reasons for Use

Integral bridges have the following advantages:

- Lower whole-of-life cost
- Improved operation safety
- Improved construction safety
- Reduced traffic disruption derived from elimination of maintenance requirement
- Improved ride-quality and noise reduction
- • Improved structural reliability and redundancy
- Improvement of bridge appearance through elimination of staining caused by water leakage through joints.
- Likely Reduced initial cost

Maintenance Considerations

InQuik Process

Design Options

- 20ft 60 ft single spans
- Multi span beyond 300 ft.
- Single lane Multi lane
- TL2 to TL5 Barriers MASH tested
- Abutments / Wing walls / Bent Caps / Decks / Barriers
- Services conduits
- Simply Supported or Semi / Fully Integral
- Formwork = ZAM / Weathering Steel / Stainless steel
- Rebar Black / Galvanised / Stainless
- <u>Complete Solution above the foundation</u>

External Finish Options

Alloy coated steel

Weathering Steel

- Formwork is sacrificial
- > However, it remains in place
- Protects the concrete
- > Concrete reinforced bridge

Stainless Steel

Benefits of The InQuik System

- Design life in excess of 100 years
- Engineered to AASHTO LRFD 9th Edition by ARUP
- Up to TL5 MASH Tested Barriers as standard.
- Locally available 5ksi concrete required
- Pre-engineered, prefabricated solution
- Safer, quicker, simpler installation.
- 'Whole of Life' cost significantly less.
- Fabricated in existing steel fabrication shops.
- low-skilled local labor
- Proven existing technology predictable

Major Markets

Market Sectors:

- Local Government bridges
- State bridges
- Rail bridges
- Mining
- Wharves and jetties
- Private, agricultural & pedestrian bridges
- <20 ft Span Culvert replacements

3 span bridge – 8 day install

3 Span Bridge

Culvert Replacement: Fish Friendly

- ✓ Developed with Department of Fisheries
 - ✓ 21' Span / 14" Girder profile

- ✓ All bridge components fit on one truck
 - ✓ Easily access remote locations

Project Example

Simple Pricing

he deck load into the

- 1. InQuik Bridge components
- 2. **Environmental and Traffic controls**
- 3. Demolition of existing bridge
- 4. Foundation installation
- 5. Crane
- 6. Concrete and pump
- 7. Labor Set out / position / concrete

Constructed by Local County Labor

Pedestrian Bridges

Light weight multi use bridge + handrail

Galvanized Handrail on Vehicular + Pedestrian

Pedestrian Bridges

Collapsible Barrier

Pedestrian Bridge with Galvanized Rail.

Railing could be made from Weathering Steel or other desired options

Weathering Steel finish & Excavator install

Simply place the lightweight modules and fill them with concrete.

Multi-Span Examples

Completed Bridges

- Reinforcement Truss holds the weight of the wet concrete.
- Concrete is in a neutral state until live load. Benefits of this?
- Formwork encapsulates the concrete whilst curing. Benefits of this?
- Formwork protects concrete. What added durability is expected?.

• Integral moment connection. Load capacity / span length benefits.

R&D – Understanding InQuik

ARUP

Fig. 4.11 a) Rotation of initial model, b) Rotation of final model.

It was shown that in all cases the permanent form work had a beneficial effect on the performance of the InQuik bridge system. It was shown that the permanent form work reduced the stress on the steel truss members by allowing the concrete in the troughs to cure autogenously and therefore develop a higher strength. This in turn led to a greater degree of load shedding from the trusses to the concrete when the concrete was set and thus lower stresses on the trusses. This stress transfer whilst beneficial for the trusses increased the stress in the tensile region of the concrete. This effect is negated by the higher development of strength in the concrete giving a higher value of allowable tensile stress. Taking both effects into consideration the concrete with the permanent form work in place was less likely to form cracks than the current InQuik bridge system. Aside from the concrete cracking in tensile regions the durability of the concrete deck was also improved from an abrasion resistance perspective by the lowering of the compressive stress at the upper surface of the deck. Finally the mean stress and cyclic stress on the steel trusses was reduced by roughly 10%. This can be seen as an extension of service life from a fatigue perspective over the current InQuik bridge system.

- Assessment of Permanent Formwork
 - ✓ Dissimilar Metals
 - ✓ Assessment of Welds
- ✓ Critical 45ft span Finite Element Analysis
 - ✓ Welding and Fatigue
 - ✓ Failsafe Design for Rail
 - ✓ Rail Design Optimization
 - ✓ AASHTO Verification

Dr. I.E.J Henderson Prof. B. Uy Prof W. Ariyaratne

R&D – Understanding InQuik

The autogenous shrinkage and total shrinkage over 300 days used for these models can be seen Fig: 4.25. Treating this data in the same manner as the data for Young's modulus gives the material properties in Table: 4.9.

Fig. 4.25 Shrinkage composite from multiple sources.

R&D – Full Scale Testing

Class A finish – No voiding / honeycombing, high gloss / reflective finish

R&D – Formwork Removal

1/8" Formwork bulging under weight of concrete.

Fig. 2.14 Measured trough deformation.

Addressing Common Issues

Issues	Causes	InQuik Bridge System
Voids	Congested RebarTimber FormworkPoor Compaction	 ✓ No Congested Rebar ✓ New / Steel Forms – transfer vibration ✓ Guaranteed concrete cover
Honey-combing	 Aggregate Segregation Congested Reinforcement Old / Reused Forms Lack of concrete cover 	 ✓ More Effective Vibration / Steel Form ✓ New Forms ✓ Assured cover
Cracking: Drying Shrinkage Cracking: Self-weight	 Moisture Loss Heat of Hydration / too much cement Dead-load / Permanent-load Inadequate reinforcement 	 ✓ Formwork Traps Moisture ✓ Mix Design & Cement Content ✓ Truss Takes Dead-load
Joints Spalling	 Multiple Joints / weak points 	 ✓ Monolithic Structure / Integral abutments
Strand / Rebar Corrosion (Precast elements)	 Black Bar Chloride ingress – concrete cover 	 ✓ Pre-coated / Hot-dipped rebar / Stainless ✓ Assured cover
Cracking: Over-stressing	 Inadequate design / reinforcement Over-loaded Transportation stress 	 ✓ Additional Capacity in Rebar ✓ Truss Disregarded in permanent design ✓ Concrete in Neutral Position ✓ Integral connection capacity

Inspecting InQuik Bridges

Inspection Types:

• Visual

- Acoustics / sound testing
- Surveys
- Chain drag
- String Lines / Camber
- GPR
- Strain Gauges
- Ultrasonic Phased Array

Fires to Floods

"The InQuik system has helped Lismore City Council's bridge crew deliver some great outcomes for our rural community. Culverts and causeways are not part of a resilient future."

Peter Jeuken – Engineering Director– Lismore County

5 Span – 230ft long

Rapid Replacement – 500 bridges in 24 months

S31: In-line Timber Bridge Replacement Options (2017/18)

7 **Results**

Figure 5.5: Heat map

7.1 MCA ranking and scores

Refer to Appendix A8 – MCA Results for full details. Table 2. MCA ranking and scores						
Modular bridge option	Supplier	Score	%	Rank		
InQuik modular bridge	InQuik Pty Limited	4.015	80.3%	1		
Wagners CFT modular bridge	Wagners CFT Pty Limited	3.936	78.7%	2		
Waeger precast modular bridge	Waeger Constructions Pty Limited	3.761	75.2%	3		
Unibridge modular bridge	Unibridge Australasia Pty Limited	3.749	75.0%	4		
Stahlton precast modular bridge	Fulton Hogan Limited	3.480	69.6%	5		

7.2 InQuik modular bridge system (preferred solution)

Category	Parameter	Site Condition	HumeDeck	InQuik	CBS	M Lock	UniBridge	C200	Waeger
Site Accessibility	Heavy Vehicle access GVM (tonnes)	60	50	25	45	40	26	20	50
	Long vehicle access	Standard trucks (12.5 m)	Standard trucks (12.5m)	Standard trucks (12.5m)	Standard trucks (12.5m)	Semitrailer (19m)	Standard trucks (12.5m)	Standard trucks (12.5m)	Semitrailer (19m)
	Accessibility for pre-works	Moderately Accessible	Not required	Not required	Not required	Not required	Not required	Not required	Not required
Bridge Componentry	Superstructure	New	New	New	New	New	New	New	New
	Substructure	Can use exsisting	Can use exsisting	Can use exsisting	Can use exsisting	New	Can use exsisting	Can use exsisting	Can use exsisting
	Foundation	Can use exsisting	Can use exsisting	Can use exsisting	Can use exsisting	New	Can use exsisting	Can use exsisting	Can use exsisting
Geometry	Max Span length (m)	10	12	18.5	12	15	44.8	61	15
	Number of traffic lanes	Two	More than 3	More than 3	Two	Three	More than 3	Two	More than 3
	Foot path	None	Dedicated	Dedicated	None	Shared with cycles	Dedicated	Dedicated	Dedicated
	Cycle lanes	None	Dedicated	Dedicated	None	Shared with pedestrian	Dedicated	Dedicated	Dedicated
	Traffic Load	SM1600	SM1600	SM1600	SM1600	SM1600	SM1600	SM1600	SM1600
Design	Barrier performance level	Regular	Low	Medium	Low	Low	Low	Low	Regular
	Exposure condition	B2	B2	Marine	81	81	Marine	81	B2
Construction	Available Lead time (weeks)	8	8	6	10	8	12	6	16
	Construction duration (Deck Only) (Days)	Urgent (< 3 days)	1	2	2	2	2	2	3
Resource availability	Concrete	Limited	Low	High	Moderate	Low	Low	Low	High
	Crane	50 t	150	50	125	100	50	0	50
	Skilled Labour	Available	Not required	Not required	Not required	Required	Not required	Not required	Not required

Colour Code EXCEED ACCEPTABLE OUTSIDE CONDITIONS

PRG17023-

Awards | Recognition

Most Innovative ABC Bridge System Developed Outside U.S 2021: InQuik Bridge System

InQuik take home the 2020 Australian Engineering Excellence Award for Canberra

InQuik Wins Excellence Award for Technology and Innovation at the NSW Concrete Industry of Australia Awards 2017

Winner of the Association for Iron & Steel Technology's (AIST) 2019 T.C. Graham Prize

Conclusion & Questions

Logan Mullaney Co-Inventor & President, InQuik Logan.Mullaney@inquikbridge.com +1 (703) 423 9349

www.inquikbridge.com

ALLOTRA