AVOIDING THE DISTRESS OF SIDEWALKS ASSESSMENTS FLORIDA ASSOCIATION OF COUNTY ENGINEERS & ROAD SUPERINTENDENTS

June 29, 2023

MC

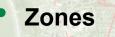
(E)WEINC.COM

Bob Hanson WGI

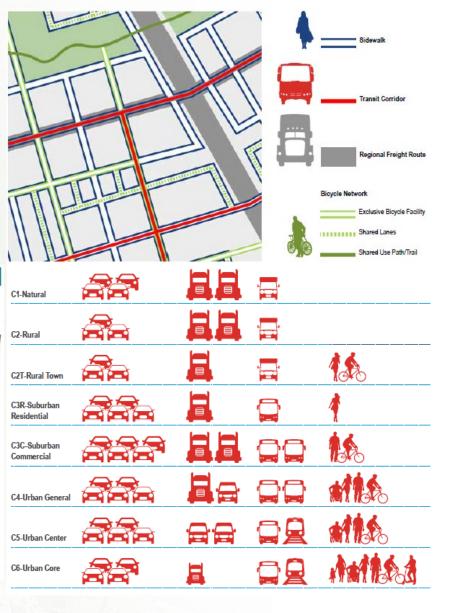
robert.hanson@wginc.com 561-713-1700

Ċĩ

ASSESSMENT PURPOSE and APPROACH


- **Condition Inventory of:**
 - Pavement areas, edge of pavement, and markings
 - Roadside assets
 - Curbing
 - Trees in right of way
 - Sidewalks and bike lanes
- Americans with Disabilities/Accessibility
 - Ramps
 - ADA Assessments
- Complete Streets

- Asset Management Planning **ADA** Compliance
- Beyond a sidewalks assessment, the purpose includes necessary data to support roadways designed and operated for pedestrians, bicyclists, motorists and transit riders of all ages and abilities


ASSESSMENT PURPOSE and APPROACH

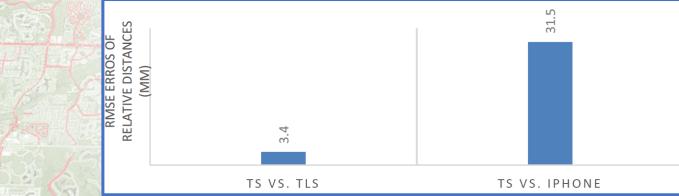
- Data for Target Zero objectives
 - Corridors with higher speeds and transit frequency have highest likelihood of pedestrian and bicycle crashes
- Data collected from sidewalks gives the perspective of the pedestrian and/or bicyclist in interactions with traffic or obstructions

- Frontage
- Pedestrian
- Furnishing
- Curb
- Roadway Realm
- Context Classifications and design approach

SIDEWALK DATA COLLECTION

- Conduct inspections and accurate mapping of sidewalks and their surroundings
- Sensor technology later supporting geospatial (GIS) processes
- Asset management data for issuance of future maintenance/rehabilitation work orders
- Collect design quality data quickly, cost-effectively
- Observe conditions with lidar, imagery and sidewalk profiler

- Linear referenced sidewalk data with the asset management system's roadway segments
- Geographic coordinates for GIS mapping for use in planning activities
- Overall Condition Index (OCI) to classify sidewalks most needing repair
- Collection rate ~ 36+ sidewalk miles a day, 1-person, one system!

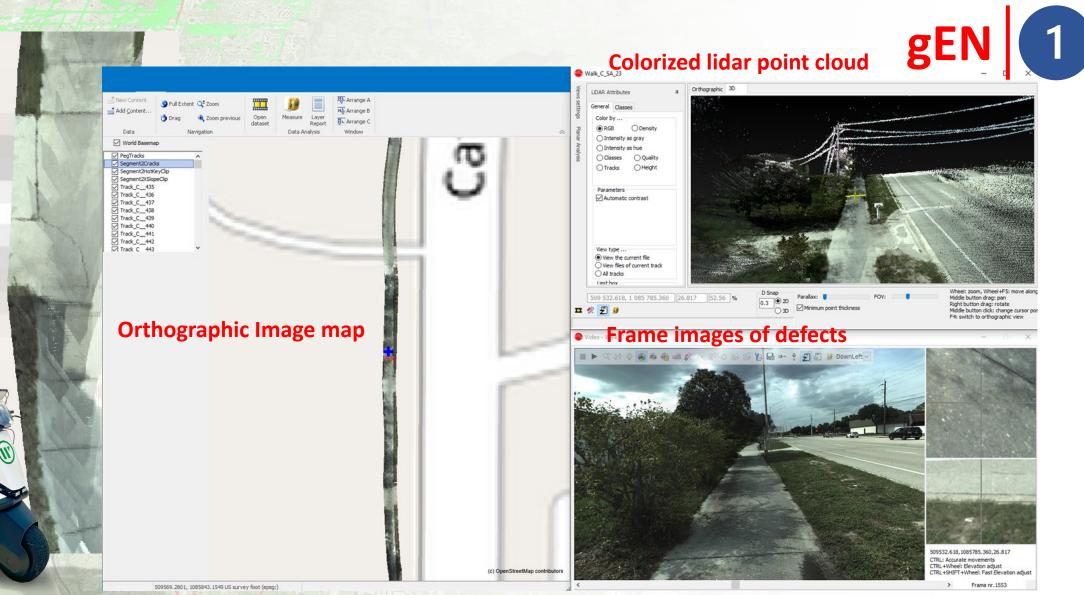

- What about these?
- Testing indicate accuracies*:
 - Absolute accuracies of ± 3 cm (1") horizontally
 - ± 7mm (0.25") vertically,
 - Relative accuracy of ± 3 cm (1").
 - Measuring range iPhone has a maximum range of 5 m (16.4')
 - For large scenes multiple passes (frames) are required, new frames required for large angular displacements
 - With only a distance range of 5 m, the iPhone is limited
 - to smaller scale projects
- These results were only achieved after:
 - Establishing a control network of 24 targets at sub-millimeter geometric accuracy
 - Use of real-time 3D mapping package for consumer mobile devices

*https://conferences.lib.unb.ca/index.php/tcrc/article/view/645/113

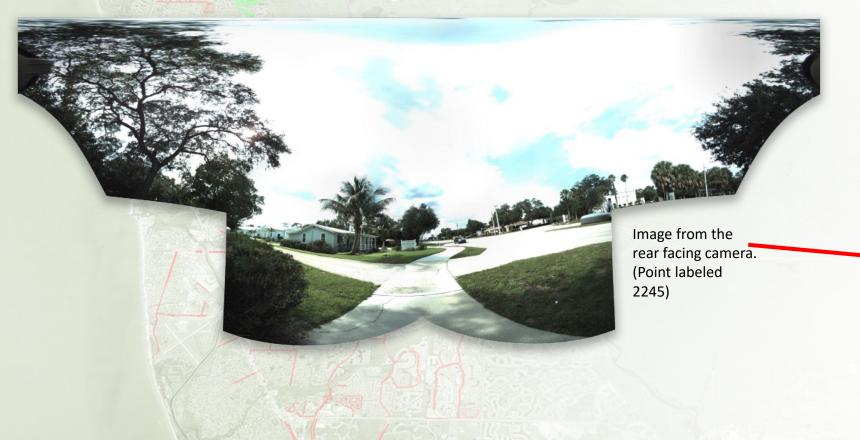
- What about these?
 - Labor intensive fielding efforts to conduct an inventory
 - Algorithm is necessary to adjust the camera positions for those estimated by the phone's SLAM system
 - Very intensive back-office processing for large areas, such as a countywide assessment and mapping-grade data
 - Comparisons
 - TS = Total Station (precise survey grade instrument)
 - TLS = Terrestrial Lidar Scanner (4 tenths of an inch)
 - iPhone
 - Survey control by TS and comparison to well defined target locations

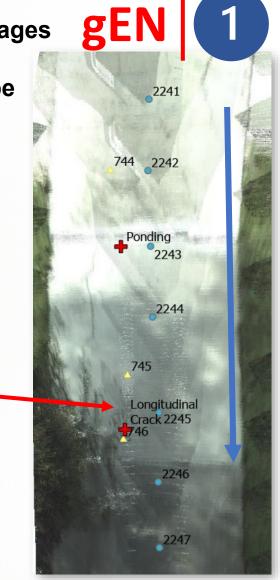

- Safety and control
- Speed and efficiency
- Clean energy, quiet and non-intimidating to pedestrians
- Affordability to our clients and WGI for operation, as compared to labor-intensive fielding collections
- Electric standup vehicle (ESV), height, width, weight, visibility considerations
- Dependability of ESV military, police grade vehicle
- Form-factor comparable to mobility scooters made sense
- Adaptability allows human interactions with multiple sensors and controller configuration
- Quick charging with auxiliary power
- Multisensor integration with positioning and orientation systems

gEN


- Identify edges and defects along the sidewalk.
- Imagery collected using multiple cameras on the ESV
- Close-range, survey-grade on the ESV
- IMU for slope and tilt (lidar and profiler IMUs)
- Keypad used to record a GPS coordinate location using preloaded hot keys for many defect types
- IMU supplements GPS for sensor trajectories
- GPS of image photocenters collected by front and back and side facing cameras

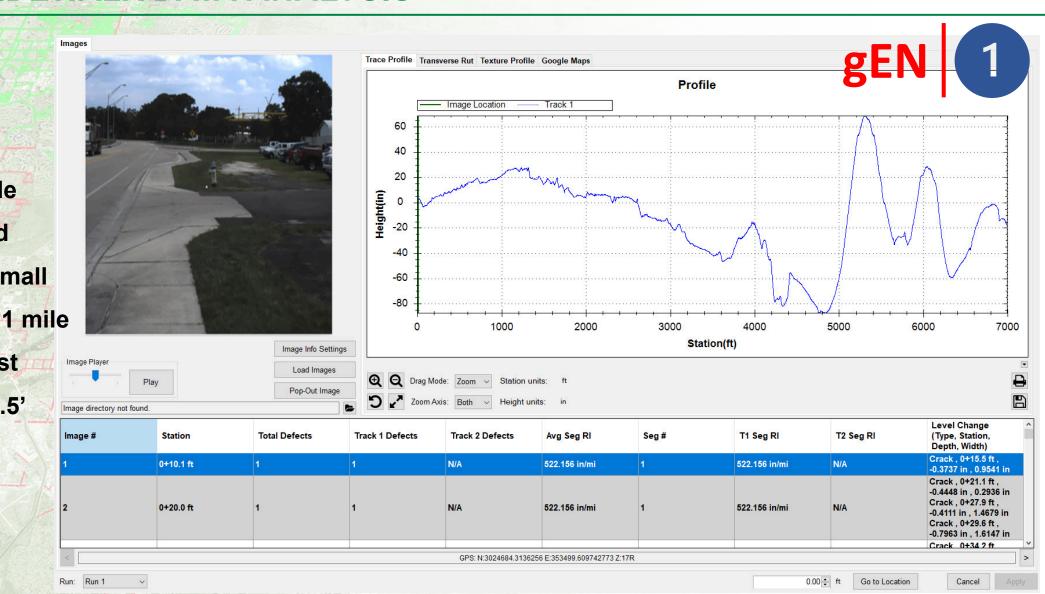
gEl


SIDEWALK DATA VISUALIZATIONS



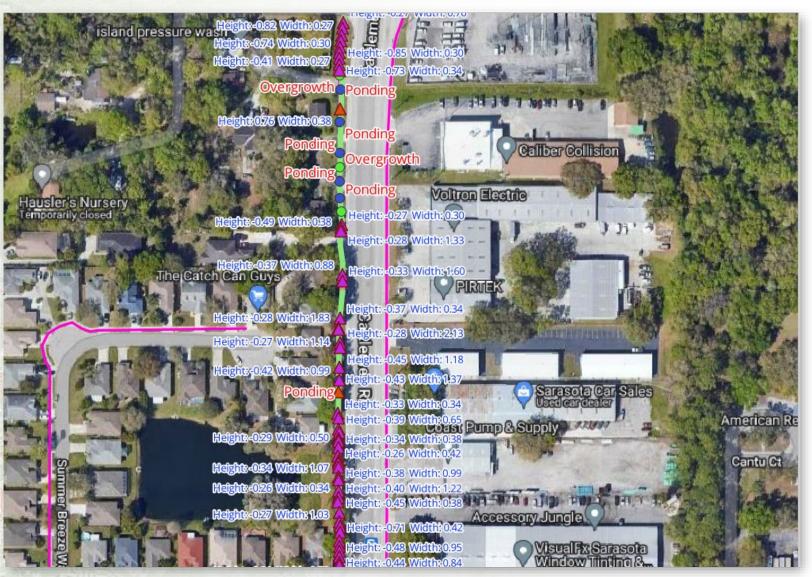
SIDEWALK DATA COLLECTION

- Attribution for sidewalk segments includes photocenters for all images
- Using imagery, the sidewalk defects can be reviewed for defect type

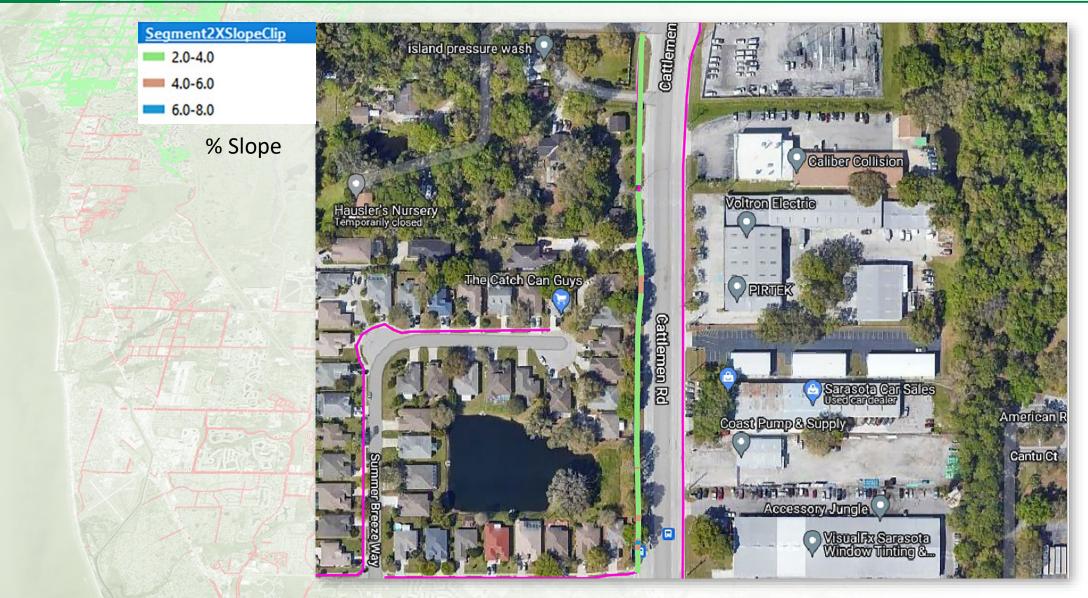

SIDEWALK DATA ANALYSIS

Example:

Profile length
 1.325 miles


GEOSPATIA

- Horizonal scale is compressed
- From POB a small hill begins +/- 1 mile
- From POB, first defect is at 15.5'
 0.37" deep
 0.95" wide



WGI GEOSPATIAL

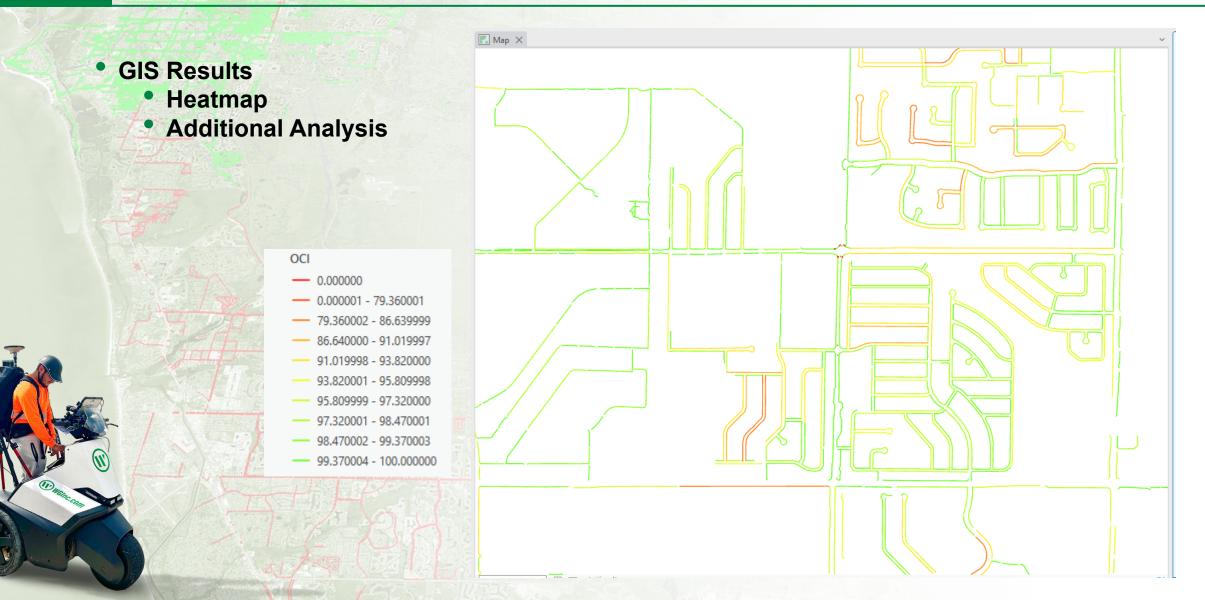
SIDEWALK DATA ANALYSIS

- Identify defect types
- Criteria for severity, categories and defect weights
- Assign Defects categories and sub-categories to segments
 - Larger weights applied to greater severity.
 - Number of panels counted based on defect criteria
 - Sidewalk OCI calculated for the segment
- Representation in GIS for needed repairs and used with asset management for planning and remedies
- Sidewalk OCI ratings necessary for programming repairs (e.g., ADA compliance)
- Communities need to have a multiple prong approach to meeting ADA criteria

	Severity
Defect	(Weight)
Crack/Opening < 0.25	3
Crack/Opening 0.25 < 0.5	10
Crack/Opening => 0.5	25
Vertical Displacement 0.25 < 0.5	3
Vertical Displacement 0.5 < 1.0	10
Vertical Displacement => 1.0	30
Pedestrian Access Route Width < 4 ft	10
Slab Width < 5 ft	5
Cross slope >2%	10
Logitudinal Slope >5%	10
Drop Off Hazard	10
Overgrowth	1
Spalling/Scalling <25% of panel	2
Spalling/Scalling 25% <50% of panel	5
Spalling/Scalling 50% <75% of panel	8
Ponding	5
Obstruction	30

Inspections determine the number of panels with each defect.

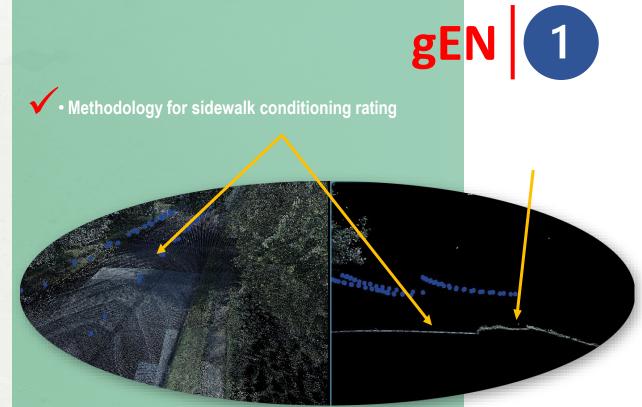
- Weighted Defect Score (WDS) = Number of Panels * Weight
- WDS over sidewalk length (WDSOSL) = (WDS) / (Sidewalk Length)
- Sidewalk OCI = 100 (WDSOSL)


SIDEWALK DATA ANALYSIS OCI TOOL

	CORP. Carlo - 49															
В	С	D E	F G	Н	I	I K	L M	N	O P	Q						
Defect	Severity (Weight)							4								
Crack/Opening < 0.25	0.2			OCI Min	0.26118		– Ol	itput	in Ex	cel						
Crack/Opening < 0.25	0.2			OCI Max	100											
Crack/Opening => 0.5	1			OCI Median	88.3341											
Vertical Displacement 0.25 < 0.5	0.2			OCI Average	80.47877											
Vertical Displacement 0.5 < 1.0	0.5			Std Dev	21.7807											
Vertical Displacement => 1.0	1			Mode	100											
Pedestrian Access Route Width < 4 ft	2															
Slab Width < 5 ft	0.025															
Cross slope 3% < 4%	0.2															
Cross slope 4% < 5%	1				00	I Distribution										
Cross slope > 5%	3		2500 23	13												
Logitudinal Slope >5%	2		2500 25													
Drop Off Hazard	5		2000													
Overgrowth	5															
Ponding	5		1500								18 19 2	20 21	22 2	3 EX	CEL FORMULA	
Obstruction	5			987							0.5 0.5 0	0.5 0.5	0.25 0	5		—
vertical clearance obstruction	5		1000	387							olo	tical aran	Longitu	Total₩ Bafeet eighte		
Spalling	5			9	560					Po	onding Obstruc ce tion obs	Spalling	dinal ¥idt Crack >4	h Defect dDefe Count ctScor	WDS WDShit	OCI
Longitudinal Crack	5		500		329	260 192 14	-			1	1 0	0 0		0 53 2.565		99.81
Width >4	5					192 14	96 73	57	0	0	1 0	0 1	0	0 45 3.50	3 158.85 0.7416	99.258
			0	- 00, 00 ee 80, 80	ta 70 70 ta 60 60	to 50 50 to 40 40 to	20 20 40 20 20 40	10 10 40 0 1 40		5	0 0	4 1	0	0 60 7.04	4 422.4 1.3241	98.67
Adjust Weights here to see how it affects th	ie entire data set.		100	0 90 90 10 80 80		10 50 50 10 40 40 10	50 50 10 20 20 10	TO TOTOO LES	0	1	0 0	0 0	0	0 5 0.62	2 3.1 0.0754	30.43 39.92
										D	0 0	0 0	0	0 41 2.54	4 104.14 0.8606	99.13
										0	0 0	0 0	0	0 93 4.64	2 163.52 0.8885	99.17
										0	0 0	0 0	2	0 4 0.535	7 12.18 0.1887	99.98 99.8
										D	0 0	2 0	0	0 41 2.325	4 204.48 0.5146	99.6 99.48
ASIA INTO BOSSI			14 4.65.05 IL 15 995.65 6 16 1158.82 6	417 Z	75	27 59 45	0 0 0 1 0 0	34 14 2 2	1 0	i 0 3 0	0 0	0 18	132	0 223 13.04	3 10650.68 2.5572 4 2907.92 2.9206	97.44
			17 2082.83 5	193 1 417 2	60 98	21 47 34 31 101 28	1 0 0 2 0 0	29 4 51 5	0 0	0 0	0 0	0 0	0	0 197 7.7	5 3872.865 1.8594	98.67
	100 1 5		18 536.16 E	89 0 27 0	32	18 43 5 4 11 1	2 0 0	11 3 1 0	0 0	0 0	0 0	0 0	4	0 118 5.465	5 644.87 1.2028 7 24.25 0.1792	98.75 99.82
			20 511.34 8	64 0 17 0	25	8 25 5	3 0 0	2 0	0 0	0 0	0 0	0 0	2	0 70 3.3	4 11.84 0.1434	99.53 99.85
1. 1. 1.			21 82.57 5 22 180.81 5 23 612.7 5	36 0	16	6 18 4 29 55 31	0 0 0	2 0	0 0	0 0	0 0	0 0	0	0 46 1.8	82.8 0.4579	99.54
			24 972.06 5	194 3	63	15 73 8	0 0 0	34 2	0 0	0 0	0 0	1 0	0	0 199 6.	7 1333.3 1.3716	98.62
			25 164.33 5 26 625.51 5 27 1275.28 4	125 0	2	115 20 97 11 97 31	0 0 0	5 0	0 0	0 0	0 0	0 0	0	0 239 16.	7 3991.3 6.3809	93.6
			28 640.38 5 29 1168.6 5	128 3	35	5 32 9 37 92 49	2 0 0	14 2	0 0	0 2	0 0	0 0	0	0 280 12.15	4 461.76 0.7211	99.27
			30 472.01 5	234 7	98 41	37 92 49 14 32 22	2 0 0	14 3	0 3	0 0	0 0	0 0	0	0 129 5.295	5 683.055 1.4471	98.55
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		32 359.35 5 33 126.26 5	72 2 25 0	30	24 29 26 8 3 6	2 0 0	7 4	0 0	0 0	0 0	0 0	0	0 127 7.33	34.27 0.2714	97.40
	1 Carl		34 671.03 5 35 128.57 5	134 0 26 0	39	15 39 14 6 5 16	1 0 0 0 0 0	20 3	0 0	0 0	0 0	0 0	0	0 131 4.915	2 92.4 0.7187	99.0
en l'altre	111 14 1		37 550.06 5	381 2 110 2	221	57 200 78 5 9 0	2 0 0 0 0 0	5 3	4 1	0 2	1 0	0 1	3	0 580 26.445	5 15338.1 8.0419 1 50.64 0.0921	91.95
			38 347.83 5 39 1113.36 8	70 2 139 0	34	11 26 20 101 28 77	1 0 0 0 0 0	5 1	3 0	0 1	0 0	0 0	0	0 104 4.905	5 510.12 1.4666 5 4143.6 3.7217	98.53
			40 959.73 E	120 0 77 2	5	158 82 81 14 36 12		35 10	4 0	1 1	0 0	0 0	2	0 379 23.22	2 8800.38 9.1696	90.8
	GA (Start)		42 406.26 5 43 400.74 5	81 2	65	14 47 34 8 16 13		13 4	15 3	0 0	0 0	0 0	7	0 204 11.0	7 2258.28 5.5587 5 1733.115 4.3248	94.44
			44 200.04			20 40 4E				<u>ä ä</u>		<u>a</u> a		0 70 40	000.00 14000	00.01
and the second																

WGI GEOSPATIAL SIDEWALK DATA ANALYSIS OCI TOOL

SIDEWALK DATA ANALYSIS RESULTS


AUTOMATED DATA COLLECTION for SIDEWALKS ANALYSIS

WGI

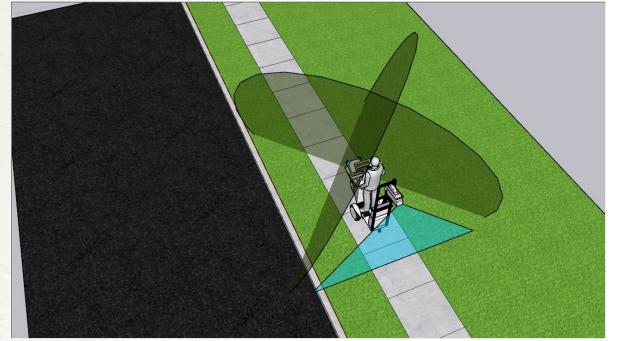
GEOSPATIAL

- LiDAR for:
 - Widths, obstructions, drop-off locations
 - Pedestrian access
- Profiler for:
 - Slope and cross slope,
 - Crack width and depth
 - Panel separation
- Data is georeferenced
- Office reviews to create GIS features
- System assigns OCI for the defined sidewalk segments

COLORIZED LIDAR POINT CLOUD AND PROFILE

Complimentary technology, surpassing basic data needs

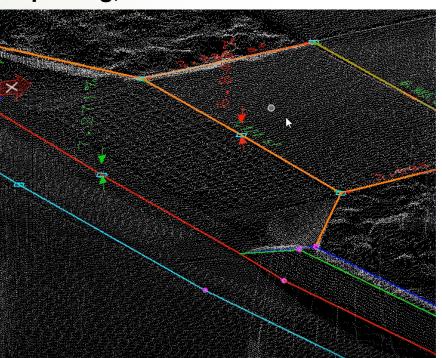
- Safe and efficient
- High benefits with superior value



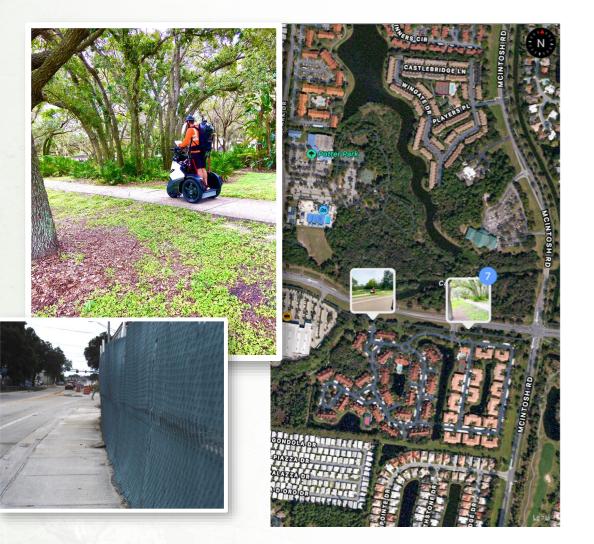
- Profiler is wide scan angle vs. single line scan, optimal height
- Imagery collected using multiple cameras mounted on the ESV
- Cross-scanning/dual scanning lidar mounted on the ESV
- Fix-mounted lidars eliminating operator fatigue
- A high-precision mapping-grade
 IMU integrated with profiler and lidars
- Panoramic 360° camera
- ESV has more power and longer range
- Full asset inventory capability for all assets (e.g., mapping grade system for structure FFE and addresses, utilities)

• Mapping grade data

- Laser's range and precision accuracy of 10 mm (0.40") at 100 meters (0.62 mile) with 600,000 pulses per second.
- 250 scan lines / second and up to 600 kHz pulse repetition rate.
- Imagery and lidar data are abundantly useful for a myriad of purposes (e.g., tree inventories in right of way)
- Sidewalk distresses:
 - Extremely high-density laser system used at close range
 - Measurement accuracy (including depth) of 1 mm.



- ADA ramp measurements and self assessments are "low-lying fruit"
- WGIGEO.tech platform provides independent viewing and measurement from lidar data, includes ArcGIS plugin and Mobile app if doing field visitations
- 3rd party AR option for integrations with lidar point cloud data
- Data is provided for client-generated measurements, reporting, GIS and asset management integrations


2

gEN

WGI GEOSPATIAL

WGI's GEOSPATIAL SERVICES

- Surveying and Mapping
- Geographic Information Systems
- Asset Management Collections
- Subsurface Utility Engineering
- Aerial LiDAR/Imagery Collection
 and Processing
 - Manned Aircraft
 - UAS
- Terrestrial LiDAR Collection and Processing
 - Mobile
 - Static
- Hydrographic Surveying
- Pavement Condition Surveying

GEOSPATIAL Thank You Any Questions?

STATISTICS