Trenchless Pressure Pipe Rehabilitation

2021 FACERS Annual Meeting

June 30, 2021

Stronger. Safer. Infrastructure.°

Why Consider Trenchless Renewal Technologies?

Traditional Open-cut Replacement

If you have...

- Easements/easy site access
- Minimal utility conflicts
- Local contractor availability/experience
- Comfort level of utility owner

Desired Outcome...

- Eliminate infiltration and exfiltration
- Restore structural integrity
- Improve water quality
- Protect pipes from corrosion
- Reduce maintenance

Why Consider Trenchless Renewal Technologies?

Traditional Open-cut Replacement

If you have...

- Easements/easy site access
- Minimal utility conflicts
- Local contractor availability/experience
- Comfort level of utility owner

Desired Outcome...

- Eliminate infiltration and exfiltration
- Restore structural integrity
- Improve water quality
- Protect pipes from corrosion
- Reduce maintenance

Trenchless Renewal

If you have...

- Easements/difficult site access
- Multiple utility conflicts
- Congested area

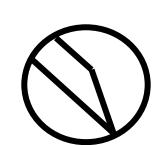
Resulting Outcome...all and more!

- Extends life of existing underground assets
- Cost-effectiveness
- Volume pricing
- High production rates
- Fewer social costs to open-cut
- Minimally disruptive

Common Trenchless Renewal Technologies

Slip lining Installation of a smalle

Installation of a smaller "carrier pipe" into a larger host pipe


Pipe bursting

A method of fracturing the host pipe and pulling in a new pipe that is equal to or greater in size

Coatings

Utilizing spray applied materials to renew the surface of the existing pipe

Directional Drilling

Installation of new pipe through a bored hole under an obstacle

Emerging Trenchless Renewal Technologies

Sliplining Installation of a smaller "carrier pipe" into a larger host pipe

Pipebursting

A method of fracturing the host pipe and pulling in a new pipe that is equal to or greater in size

Coatings

Utilizing spray applied materials to renew the surface of the existing pipe

Directional Drilling

Installation of new pipe through a bored hole under an obstacle

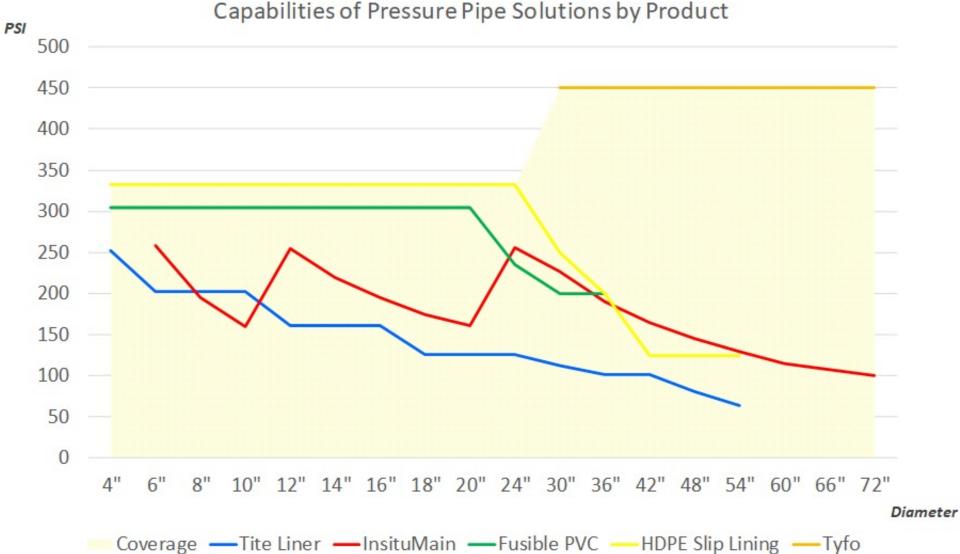
Cured-in-place Pipe (CIPP)

A jointless, seamless resin saturated tube that is installed in the existing host pipe and cured

Hose Lining

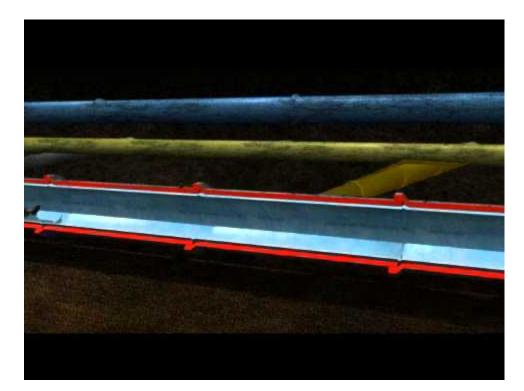
A modified type of sliplining that involves installing a high-pressure hose product inside a larger host pipe

Which Technology Should I Consider?



Technology Matrix

	Applications					
		Non-potable		Max. Install		AWWA
Product/Process	Potable Water	Water	Diameter	Length	Max. Pressure	Classification
Cement mortar lining	Х	Х	4" - 36"	2,000'	N/A	1/11
Epoxy lining	Х	Х	4" - 36"	1,000'+	N/A	1/11/111
CIPP	Х	Х	6" - 96"	1,000'+	250+ psi	III/IV
FRP	Х	Х	> 30"	Unlimited	450+ psi	III/IV
Pipe bursting	Х	Х	4" - 36"	1,000'+	305 psi	IV
Slip lining (conv.)	Х	Х	>4"	4,000'+	305 psi	IV
Slip lining (mod.)	Х	Х	2" - 54"	4,000'+	140 psi	III/IV

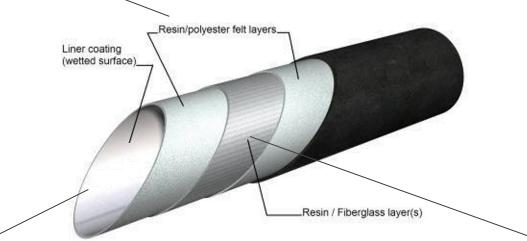

Our Portfolio Addresses All Major Diameters and Pressures

Coordination with Roadway Projects + More

- Minimal Traffic Control
- Scheduling of different projects
- Minimize new material waste

Not Just Pressurized Pipelines

- Storm
- Sewer
- Water


Pressure-rated CIPP

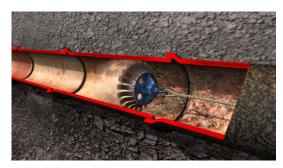
Epoxy/polyester felt structure

- Provides for external load capacity
- Layer thickness can be varied depending on loading conditions
- Utilizes epoxy resin system instead of polyester resin (drinking water safe)

Hazen-Williams Coefficient

• C=140

PP/TPU coating <


- Water contact surface
- Coating also provides water barrier for installation processes & handling

Epoxy/fiberglass structure

- Provides high tensile/hoop strength
- Number of layers varies depending on diameter and internal pressure

InsituMain[®] CIPP installation

Step 1:

If required, setup a temporary water bypass and excavate pits to provide access to the existing pipeline. Clean the pipeline and inspect using closed circuit TV (CCTV) in order to ensure the host pipe is free of any potential hazards.

Step 2: Install the InsituMain[®] liner into the host pipe using:

- Air (steam cure)
- Water (water cure)

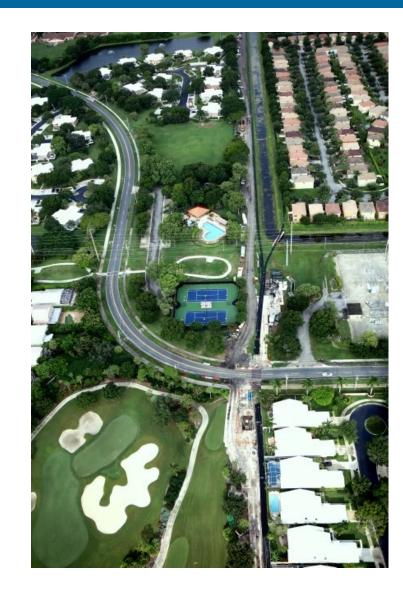
Pull-in (steam or UV cure)
 After curing, the pipe is
 cooled and the ends are cut.
 Following hydrostatic
 pressure testing, post installation CCTV inspections
 are also completed.

Step 3:

Reinstate service connections (if present) and/or reconnect lined sections to the existing system using standard pipe fittings. Finally, restore excavation pits and remove temporary bypass, if applicable.

CIPP Lining – West Palm Beach, FL

Project Description


- Owner: West Palm Beach, FL
- Pipe Material: PCCP
- Diameter: 48-inch
- Length: 5,700 LF
- Pressure: 25 psi
- Type: Sewer Force Main

Problem Statement

- Located near canal, county club and high-end residential homes
- High social costs
- Difficult site access
- Deteriorated pipe with pre-stressed wire breaks

WEST PALM BEACH

CIPP Lining – West Palm Beach, FL

Renewal Technology Selection

- Fully Structural (AWWA Class IV)
- Full sewer bypass
- Long installation lengths (Averaged 1,000 LF)
- Minimal internal diameter loss

INSITUMAIN® CIPP LINING

CIPP Lining – El Dorado Springs Canyon, CO

Project Description

- Owner: City of Lafayette, CO
- Pipe Material: Steel
- Diameter: 12-inch
- Length: 1,200 LF
- Pressure: 45 psi
- Type: Raw water

Problem Statement

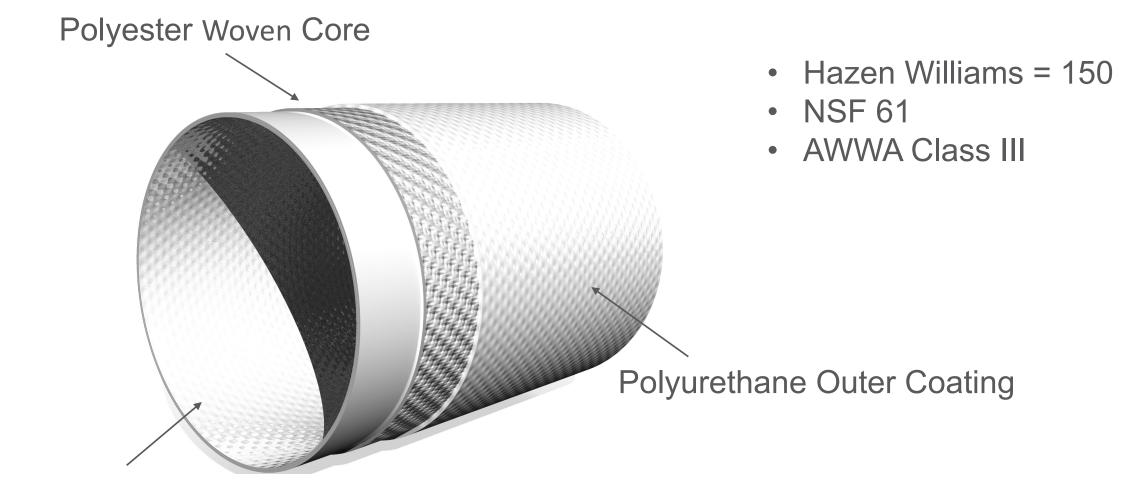
- Catastrophic flooding damaged water structures
- Pitting and holes in 50-year old pipeline
- Difficult site access
- Numerous 11-degree bends
- 75-foot elevation change

CIPP Lining – El Dorado Springs Canyon, CO

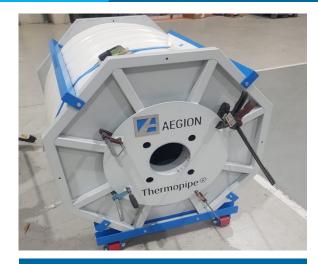
Renewal Technology Selection

- Fully Structural (AWWA Class IV)
- Span holes in host pipe
- Survive host pipe failure
- NSF/ANSI 61 Standard
- Minimal site footprint

INSITUMAIN® CIPP LINING



Project of the Year 2016 Rehabilitation Runner Up


Hose Lining

Polyurethane Inner Coating

Installation Steps

Step 1 Set up Reel on site for unwinding.

Step 2 Attach pull head, connect to cable and use winch for pull in.

Step 3

Inflate Thermopipe[®] with compressed air to expand hose and break tape.

Step 4

Simple mechanical end connections and reconnect with standard waterworks fittings.

EndConnect[™] TP

- Epoxy Coated Steel
- Ease of Reconnection
- Plain End Connection

Lake Worth, FL- Water Main Rehabilitation

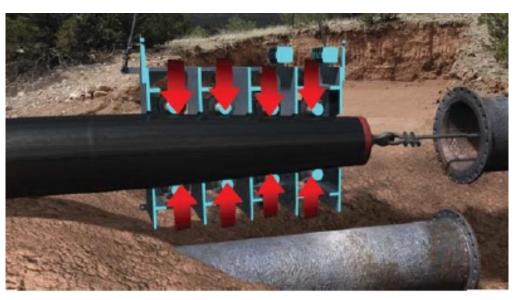
Project Description

- Owner: Lake Worth
- Pipe Material: HDPE
- Diameter: 12-inch
- Length: ~400 LF
- Pressure: 60 psi
- Type: Water Main

Problem Statement

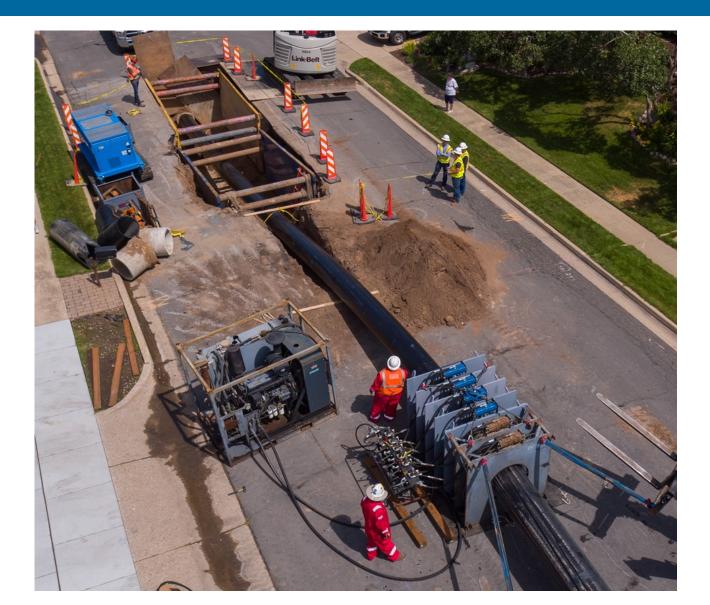
- Located along a roadway crossing a canal
- Difficult open cut replacement
- Minimal workspace
- Leaking joints

Lake Worth, FL- Water Main Rehabilitation


Renewal Technology Selection

- Semi-structural (AWWA Class III)
- No bypass required
- Flexible work zone
- Minimal internal diameter loss (tight-fit liner)

Tight-Fit HDPE Lining: Radial Compression



- Diameter is temporarily reduced by radial compression
- Timing is important: liner will begin to grow back once tension is released
- Can be used for structural or non-structural
- Entire liner section is installed in a single and continuous "pull"

Tight-Fit HDPE Site Installation Layout: Layton, UT

Modified Slip Lining – Valley Forge, PA

Project Description

- Owner: Tredyffrin Township, PA
- Pipe Material: PCCP
- Diameter: 30-inch
- Length: 18,000 LF
- Pressure: 50 psi
- Type: Sewer Force Main

Problem Statement

- Three pipe failures on 40-year old pipe
- Difficult site access
- Two river crossings
- High social costs
- Traversed historic Valley Forge National Park

Modified Slip Lining – Valley Forge, PA

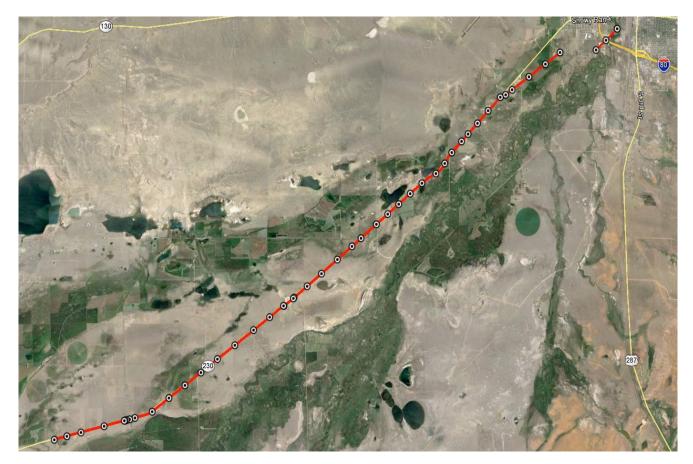
Renewal Technology Selection

- Fully Structural (Class IV)
- Full sewer bypass
- Long installation lengths (Longest 1,500 LF)
- No loss in pipeline capacity

TITE LINER® HDPE MODIFIED SLIP LINING

Project of the Year 2017 Rehabilitation Honorable Mention

Modified Slip Lining – Laramie, WY

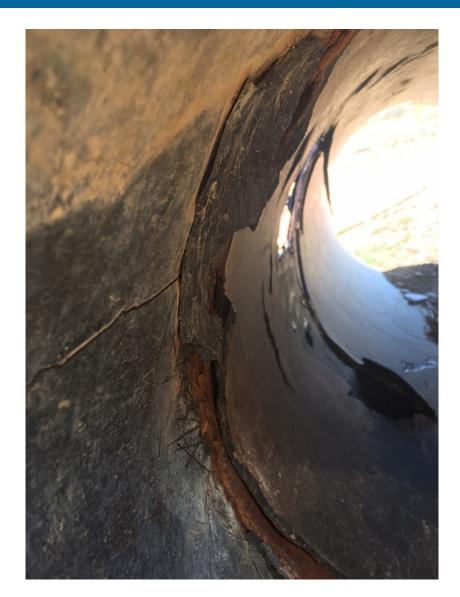

Project Description

- Owner: Laramie, WY
- Pipe Material: Steel
- Diameter: 20-inch
- Length: 95,000 LF
- Pressure: 0 to 70 psi
- Type: Potable Water

Problem Statement

- Pipe built in 1940's
- No reduction in flow allowed
- Fully structural host pipe with leakage
- Coal tar lining impacted water quality
- Limited access

Modified Slip Lining – Laramie, WY


Renewal Technology Selection

- Semi-structural (Class III)
- 18 service laterals reinstated
- Long installation lengths (Longest 3,100 LF)
- No loss in pipeline capacity

TITE LINER® HDPE MODIFIED SLIP LINING

Carbon/Glass Fiber (FRP)

- Carbon Fiber Reinforced Polymers (CFRP)
- Glass Fiber Reinforced Polymers (GFRP)

INTRODUCTION TO FRP

• Composite structure

- Polymer Matrix = Epoxy
 - Bonds filaments to share loads
- Reinforcement = Carbon and/or Glass
 - Continuous Strands
- Excellent strength to weight ratio
- Directional Strength
- Non isotropic
 - Complex shapes

When does the Tyfo[®] Fibrwrap[®] system make sense?

Diameter range:

- Large-diameter pipe (internal)
 - 36" to ≥ 216"
- Small-diameter pipe (external)
 - Less than 36"

Pressure range:

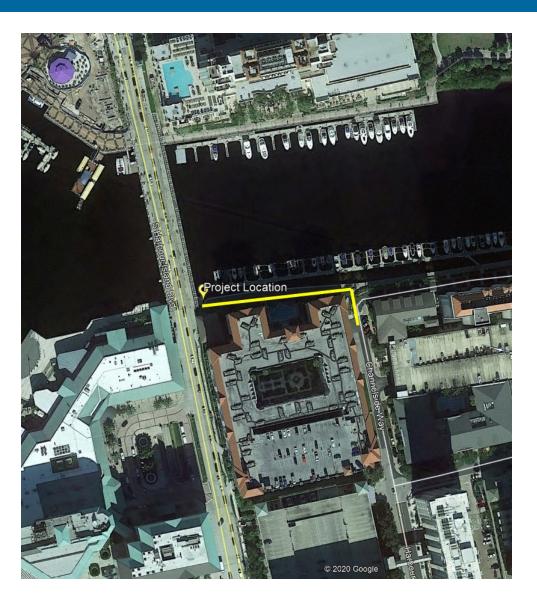
- Up to 400+ psi
- Vacuum pressure (to 14.7 psi)

External loads:

- Earth cover
- Traffic loads
- Water table
- General surcharge

Designed as either an independent/stand alone or an interactive/composite system

Fiber Reinforced Polymer – Harbour Island, FL


Project Description

- Owner: City of Tampa, FL
- Pipe Material: Steel and PCCP
- Diameter: 48 and 54-inch
- Length: 350 LF
- Pressure: 100 psi
- Type: Sewer Force Main

Problem Statement

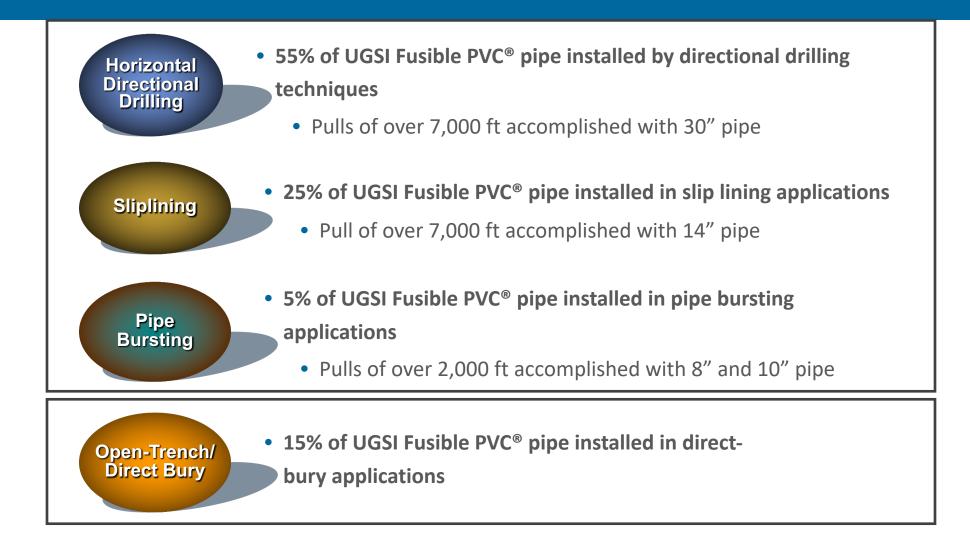
- Vertical and horizontal 90 degree bends
- Difficult site access with high water table
- Deteriorated pipe
- High social costs
- Remove and replace not feasible

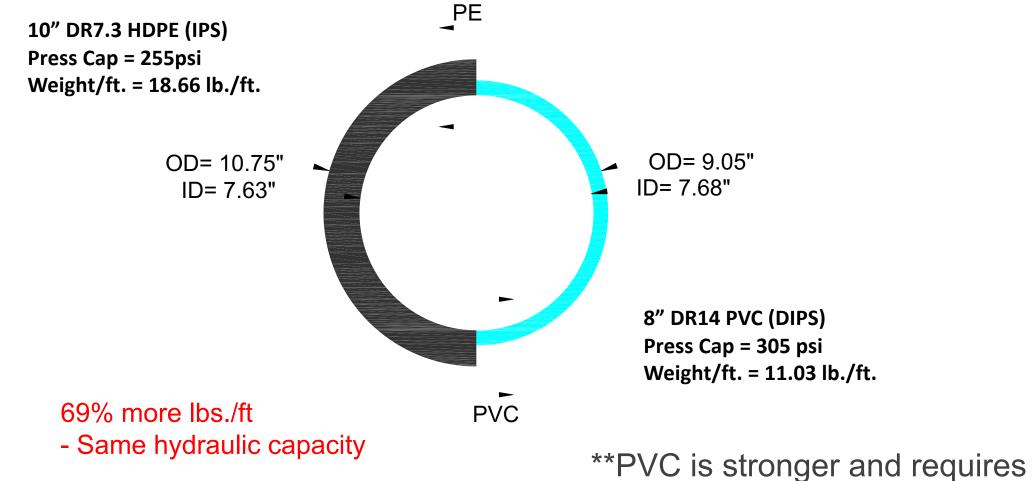


Fiber Reinforced Polymer – Harbour Island, FL

Renewal Technology Selection

- Fully Structural (Class IV)
- Shortened construction schedule
- Minimal cure time with immediate return to service
- Single point of access/small jobsite footprint
- No loss in pipeline capacity


TYFO[®] FIBRWRAP[®] FRP LINING



Fusible PVC Pipe Applications

HDD w/ Fusible PVC[®]: Overview

less wall thickness!

Loose-Fit Fusible PVC[®] Sliplining Case Study: East St. Louis, IL

- Illinois American Water
- Host Pipe 24" PCCP Water Main
- 20" DR 18 Fusible C905[®] Pipe ~ 3,420 LF Sliplined through existing water main

Fusible PVC[®] Pipe Bursting Case Study: Moorhead, MN

- Moorhead Public Service (MPS) hires bursting contractors and self performs the excavations and connections
- They work closely with the City of Moorhead to pipe burst in advance of mill & overlay projects to minimize pavement patching costs

We Have to Ask the Proper Questions

- What type of problems is the pipeline system experiencing?
 - Structural or non-structural?
- How much longer do I need this asset?
 - Product/Process type as well as designs can be modified accordingly
- Do I need additional capacity in this pipeline?
 - Future commercial or residential expansion
 - Originally under designed
- Can I accept less capacity in this pipeline?
- Are there multiple services and/or bends present in the pipeline?
- Can pipeline access be created easily and cost effectively?

Project Name:	
	Email:
Location:(State)	(Country) Phone:
Role: General Contractor Subcontractor	
Status: Emergency Non-emergency	
Project Type:	Pipe Type:
Water Industrial	Cast iron Steel
O Potable O Effluent O Non-potable O Temperature	
O Non-potable O Temperature Sanitary force main Other	
System Info:	Other Information:
1. Diameter(s):	Bypass required: Yes No
2. Length(s):	Approx. footage of bypass:
3. Operating pressure:	Lievation change: If dreater than 10 feet
4. Surge pressure: 5. Depth(s):	Pressure Testing: Yes No
6. Water table:	O ASTM O AWWA O Other:
7. Bends: Ves (if yes, how many?) No	Pipe location:
O 11-1/4	Railway crossing Roadway
0 22-1/2	River crossing Green area
0 45	Bridge crossing Other:
0 90	Building
8. Valves: Yes No No	AUES IU:
9. Hydrants: Yes No 10. Service connections:	Egnyte link:
Size:	Plans O Yes O No
Type: Direct tap:	Specifications O Ver O No
Saddle tap:	Video O Yes O No
President Decomination	
Project Description:	
Reason for lining:	

Thank you for your time! Any questions?

Steve Soldati, P.E.

ssoldati@aegion.com

(407) 576-0849

Find me on LinkedIn!

