A Modern Strategy for Municipal Infrastructure Projects

Utilizing New Structural Fiber Composites In A Harsh Florida Environment

Jon Hansen Business Development Manager

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

What do you think of when you hear the word Fiberglass?

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

How about the word Fiberglass Composites?

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Cool, But So 1900's

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

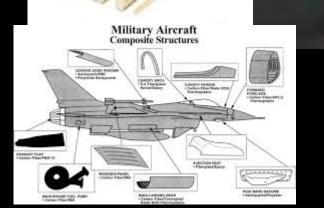
Composites Today

Intertwining Science, Chemistry, and Engineering

Polymer Matrix Resins

- Polyester Resin
- Vinylester Resin
- Epoxy Resin

• Fiber Components


- Glass Fiber (Many Variations)
- Carbon Fiber
- Basalt Fiber

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Composites Today

ingkainen aliba

82

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

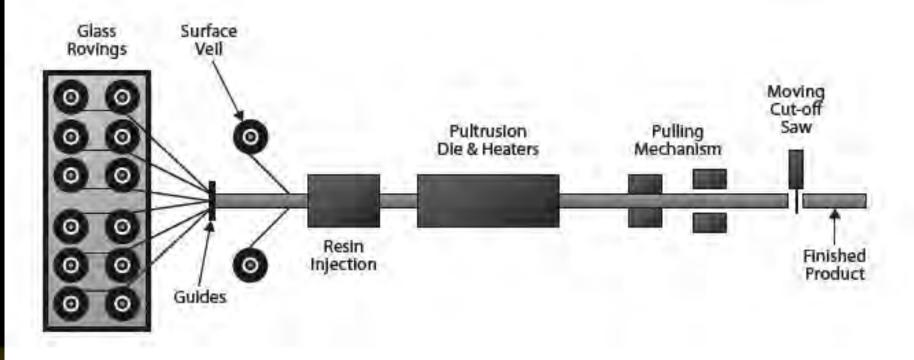
COMPOSITE FIBER TECHNOLOGIES

Composites Today

- Today it has become the material of choice in <u>Corrosive Locations</u> and in applications <u>Where Mass</u> <u>Matters</u>.
 - Desalinisation Plants (pipes / tanks)
 - Mineral Extraction
 - Aeronautical originally NASA and now Airbus (A380) and the Boeing Dreamliner
 - Formula 1 (and now Audi / BMW etc)
 - Sporting Equipment

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Pultruded Fiberglass What is it?



BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Pultruded Sections

Pultrusion Process

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Pultruded Sections

Wagners produces modular building components from which engineered solutions can be manufactured.

- 100x75x5 SHS (4" x 3" nom)
- 100x100x5 SHS (4" x 4" nom)
- 125x125x6.5 SHS (5" x 5" nom)
- 300x6 Flat (12" x ¼" nom)
- 300x24 Flat (12" x 1" nom)

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Bonded Sections

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

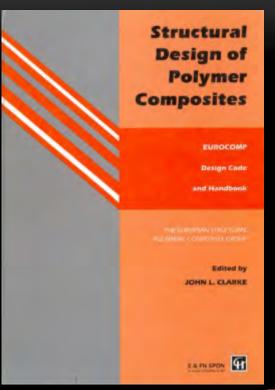
Section Properties Comparison with Steel and timber

	CFT	Steel Gr250	Timber
Section	4" x 4" x 5.2 SHS	4" x 4" x 5 SHS	4" x 4" x F17
Mass (PSF)	0.82	2.9	1.8
Tensile strength Long (PSI)	88,473	59,465	4,351
Compressive strength Long (PSI)	70,343	50,763	7,252
Youngs Modulus E (KSI)	5,221	29,008	1,595

Lighter than timber – Stronger than steel !!

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Material Properties and Testing


BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Design Standards

Euro-Comp Code

- European Polymeric Structural Composites
 Group
- factors evaluated based on process
- ASCE Pre-standard
 - for LRFD of pultruded fiber reinforced polymer structures – November 2010

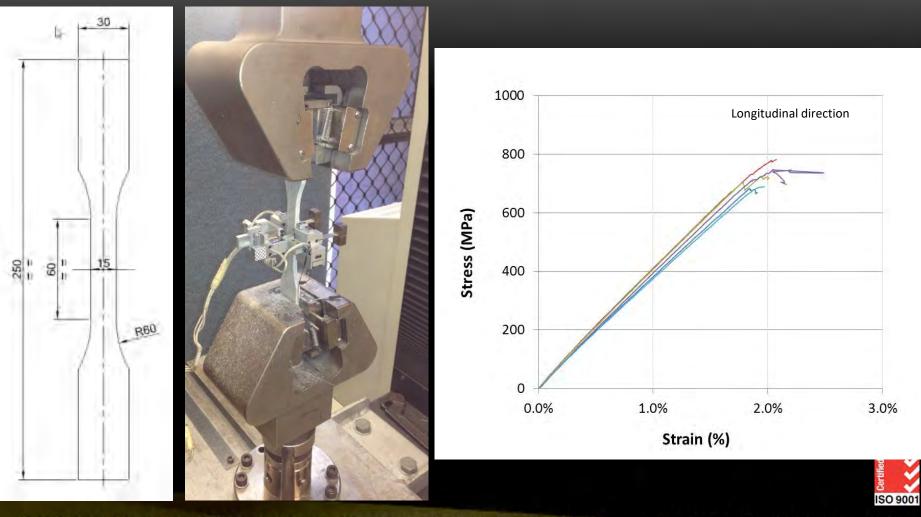
BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Testing Standards

All product from the pultrusion process is batch controlled, with batch testing undertaken. Batch testing results must be greater than allowable design values set from prototype testing.

Tests include:

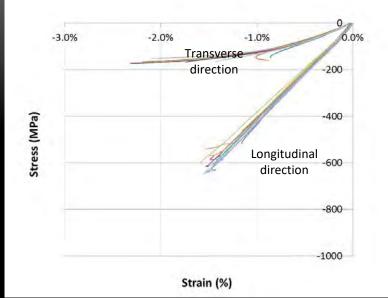
- Shear strength and modulus testing
- Tensile strength and modulus testing
- Compression strength and modulus testing
- Completeness of cure

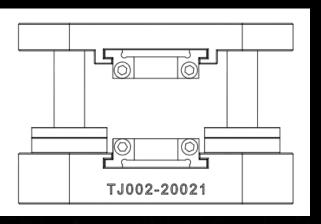


BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Tension




BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Compression

Certified System 1006 OSI

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Wagners Pultruded Sections

WAGNERS PULTRUDED FRP STRUCTURAL SECTIONS

PRODUCT SPECIFICATIONS

754100x5, 100x100x5, 125x125x6.5 5H5

	Designation	ini.	80	ui .	Great	-		Almost a . y and a main					
Depen	Wans.	Täädensi	Anternal J.	Emerical.	Argan	Microsoft di Inordia obserit the a angle I.	Mircount of Inertia about the Y and	Dantis Section Michaias For Annuling stream that a said Z.	Dantik Sertikon Alaskalan, for Inciding almost The y dainy T _c	Destric Section Ministrator for formiting about that is unit. Z	Tansion Constant		
denietij.	- inset	- 10000	Down1	- (pass) -	press'y	(athera')	100'000'1	(10/0107)	(10) (100)	(10"ento")	(12"===="		
309	75	5.05	\$75	30	1694.98	4.34	3.432	45.29	18.16		2.89		
100	100	6.75	6.75	10	1943.68	7.86	2.86	57.20	-57.79	42.85	4.65		
223	145	85	4.75	38	102434	6.98	6.58	3331.3	211.7	82.52	13.67		

SECTION PROPERTIES

MECHANICAL PROPERTIES

Designetion				Untimate Teorile Strongth		Uttinuer Compressive Storages		Inisian's Conservation Strongen		Nindalus Of Destinay		Capacity M
	Manu	pendity	ty Lorginamus	Transverse).org(tudine)	Transme	Shear Strangen	Sorghador	Transverse	stanki.	Tails	
	dig/mi	P4/m)	(Mapo)	(Mpre)	(Myse)	[Mpa]	(Dilary)	(H)/mm)	(He/micri I	(HELLIN)	(all.m)	
100+75+5585	5.25	2970	850	42.	550	.194	54	53468	12960	15.17	9.84	
IDIa10in53HF	3.43	2970	650	42	554	104		15400	12900	17.74	17.74	
LIS+123+6.3 (P/F	5.94	1970	639	41	550	1194	- 84	15000	12900	85.85	35-85	

MATERIAL	REDUCTION	FACTORS

Material Partiel Selety Fortee	Shirt Term Monthly	Atong Terms Issueling
Land Multiplier	6.9	3.16
Material Reduction Factor	0.79	0.52

ELIROCIMMP Design Code and Handbook, Edited by John L. Clarke,

1" edition, 1996, Published by E & FN Spon, London SEL & HN, UK

REV &

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Characteristic Values

Property	Notation	Value	Unit	Test Method	PSI			
Tensile Strength – Longitudinal	f _{Lt}	610	MPa		88,473			
Tensile Modulus of Elasticity – Longitudinal	E _{Lt}	36300	MPa	ISO 527-4	5,264,870			
Poisson's Ratio – Longitudinal	ν	0.28						
Tensile Strength – Transverse	<i>f</i> _{Tt}	55.0	MPa		7,977			
Tensile Modulus of Elasticity – Transverse	E _{Tt}	10800	MPa	ISO 527-4	1,566,408			
Poisson's Ratio – Transverse	ντ	0.09						
Compressive Strength – Longitudinal	f _{Lc}	485	MPa		70,343			
Compressive Modulus of Elasticity – Longitudinal	ELC	33300	MPa	ASTM D6641	4,829,757			
Compressive Strength – Transverse	fтc	120	MPa		17,405			
Compressive Modulus of Elasticity – Transverse	E _{Tc}	11600	MPa	ASTM D6641	1,682,438			
In-Plane Shear Strength – Longitudinal	f _{Lv}	84.0	MPa		12,183			
In-Plane Shear Modulus of Elasticity – Longitudinal	GL	4280	MPa	ASTM D7078	, 620,762			
Interlaminar Shear Strength	f _{IV}	44.0	MPa	ASTM D2344	6,382			
NOTE: The values in the table are the characteristic values to be used for design in normal ambient conditions. It								

NOTE: The values in the table are the characteristic values to be used for design in normal ambient conditions. It does not include adjustment factors to account for temperature, humidity, and chemical environments.

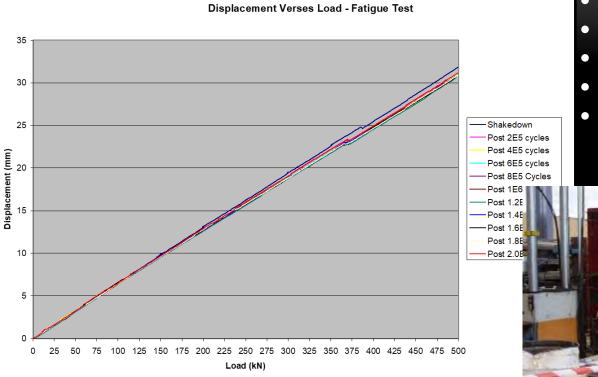
Certified System 1006 OSI

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Composite Beams

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS



COMPOSITE FIBER TECHNOLOGIES

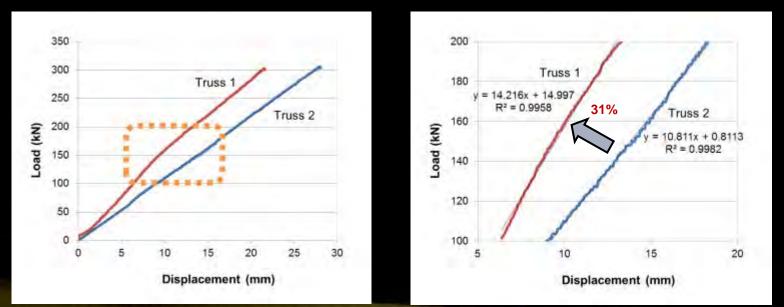
www.wagnerscft.com

ISO 9001

Testing Analysis - Fatigue

- 2 Million Cycles
- 4-Point Bending
- 2x 56,000 lb Point Loads (250kN)
- Average 1 ¼" Deflection (32mm)
- No loss of stiffness across test

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS



Grout-filled truss (Comparative study)

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

		Section / Joint						
GNERS	Chord	Тор	Bottom Brace Vertica					
	Truss 1	250x125 BRB / Grout-filled	250x125 BRB / Glued insert					
	Truss 2	250x125 BRB / Glued insert						

COMPOSITE FIBER TECHNOLOGIES

www.wagnerscft.com

ISO 9001

Cross Arms – How Strong ?

2,425 Pounds Per Position = Over 3 1/2 Tons!

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

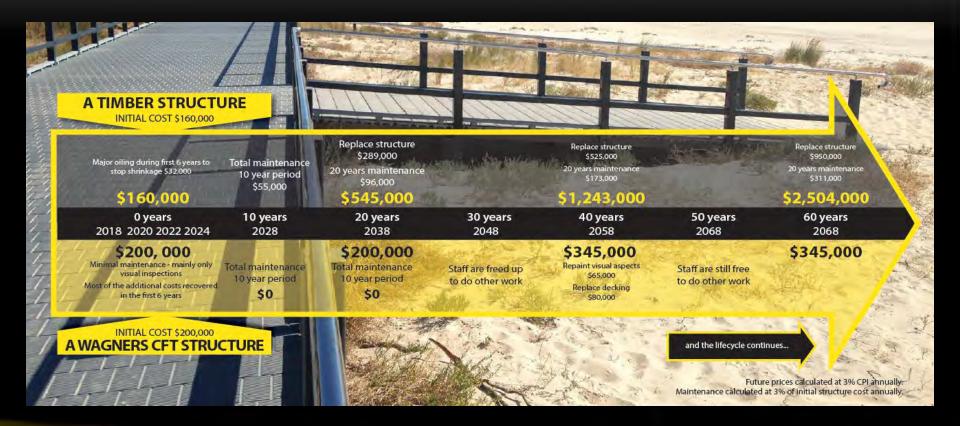
Product Longevity

- 75 Years before any sign of Degradation – Unpainted
- Painted 100 Years Plus

- University of New South Wales Independent Testing

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Paint and Finish


- Paint is Vitreflon V700
 Manufacturers Warranty
- 25 Years Design Life to First Maintenance 40 Years Expected Life
- Can Be Produced in Nearly Any Color
- Suggested Programmed Maintenance:
 - Every 2 years
 - Touch up where required
 - Zero on major for minimum 25 years

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Making Your Dollars Go FurtherLongevity - Zero Maintenance:

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Wagners Composite Fiber Technology

Ocala Aquafer Recharge Park Boardwalk (Under Construction) Ocala, Florida

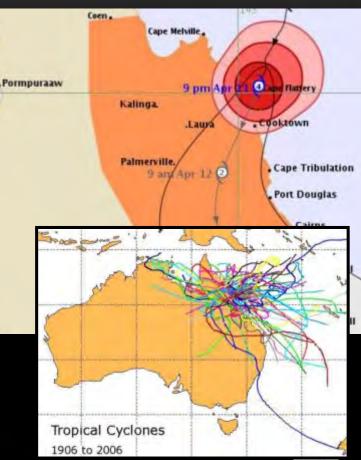
BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Projects

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

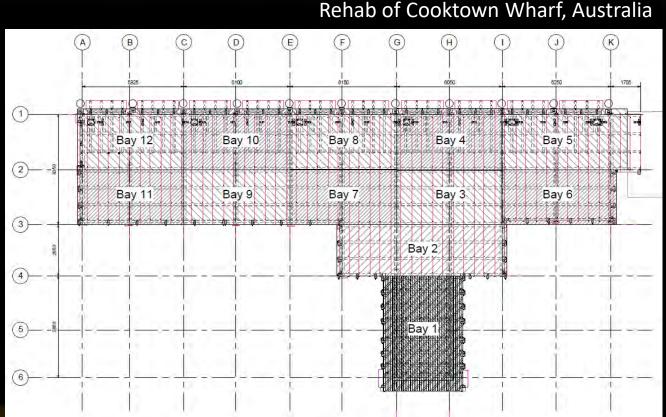
Rehab of Cooktown Wharf, Australia


BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Designing For Extreme Environments Design Considerations Coen.

- Designed IAW AS4997 Maritime Structures
- Environmental Highly Corrosive exposed position
- Close proximity to Important Natural Habitats
- Use by Commercial operators and general Public
- Live Load 24 ton Hino Truck (20kN on 150x150mm) and 5kPa
- Dead Load on existing piles not to be increased \bullet
- Cyclone Rated Wind Load and Wave uplift + Storm Surge
 - Wave Crest approx. ~20" above deck surface \bullet
 - Uplift Pressure across deck in storm surge ~150 \bullet PSF

Rehab of Cooktown Wharf, Australia



BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

- Design allowed for 'bays' to be made in adjacent carpark, and lifted in with Cook Shire Councils Telehandler
- No requirement for Barge or Water Based Crane

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Road Bridges on a Single Trailer to Remote Locations

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Rehab of Cooktown Wharf, Australia

Demolition of Wharf

Construction Sequence

- 1. Timber superstructure hold down bolts removed
- 2. Timber superstructure cut, lifted and removed

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Rehab of Cooktown Wharf, Australia

Assembly of Bays

Construction Sequence

1. Composite superstructure assembled on site

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Rehab of Cooktown Wharf, Australia

Installation of Bay 1

Construction Sequence 1. Composite superstructure lifted in

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Rehab of Cooktown Wharf, Australia

Installation of Bay 2

Construction Sequence

- Composite superstructure lifted in
- 2. Install Deck
- Drive on Composite Superstructure to remove next Timber Bay

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Designing For Extreme Environments DfMA – Design for Manufacture and Assembly

Rehab of Cooktown Wharf, Australia

Decking Completion

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Designing For Extreme Environments DfMA – Design for Manufacture and Assembly

Rehab of Cooktown Wharf, Australia

Fender Installation (Piles By FenderTec)

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Designing For Extreme Environments

Rehab of Cooktown Wharf, Australia

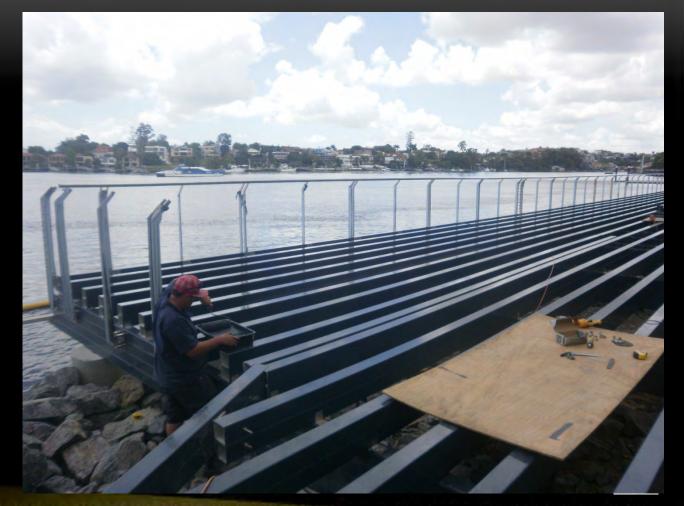
Completed Warf

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Boardwalk Project - Before

Brisbane City
 Council –
 Freshwater
 Apartments
 Boardwalk



BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Boardwalk Project - During

Brisbane City
 Council –
 Freshwater
 Apartments
 Boardwalk

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Boardwalk Project - After

Brisbane City
 Council –
 Freshwater
 Apartments
 Boardwalk

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS



www.wagnerscft.com

Anzac Walk – The Build

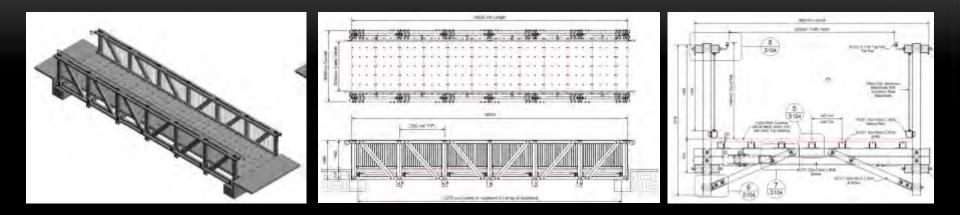
BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Arundel Wetlands Raised Boardwalks

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

ISO 9001

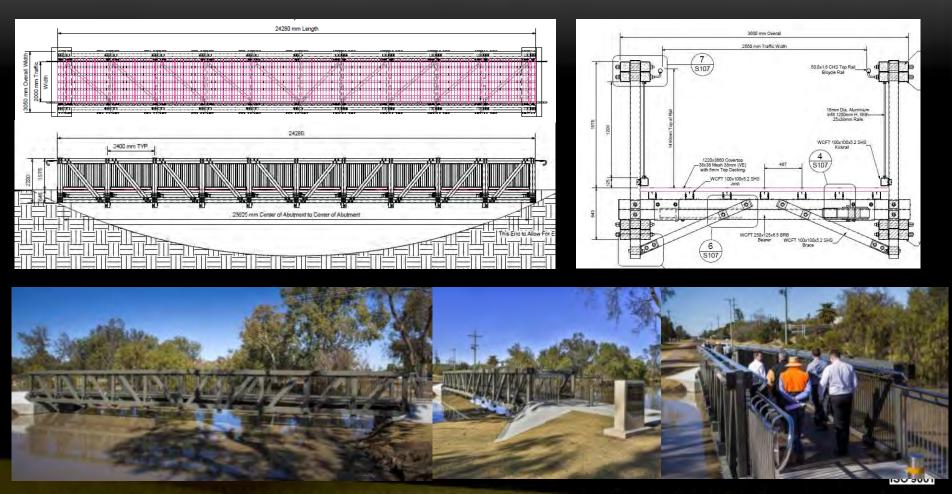
www.wagnerscrt.com


www.wagnerscrt.com

www.wagnerscrt.com

Clewley Park Footbridge

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS



COMPOSITE FIBER TECHNOLOGIES

Stage 2 - Mercy Footbridge replacement

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS


Certified System 1006 OSI

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Dunlin Road – Burleigh Waters

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Suggested Programmed Maintenance on Pedestrian Structures

Zero for 25 Years

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

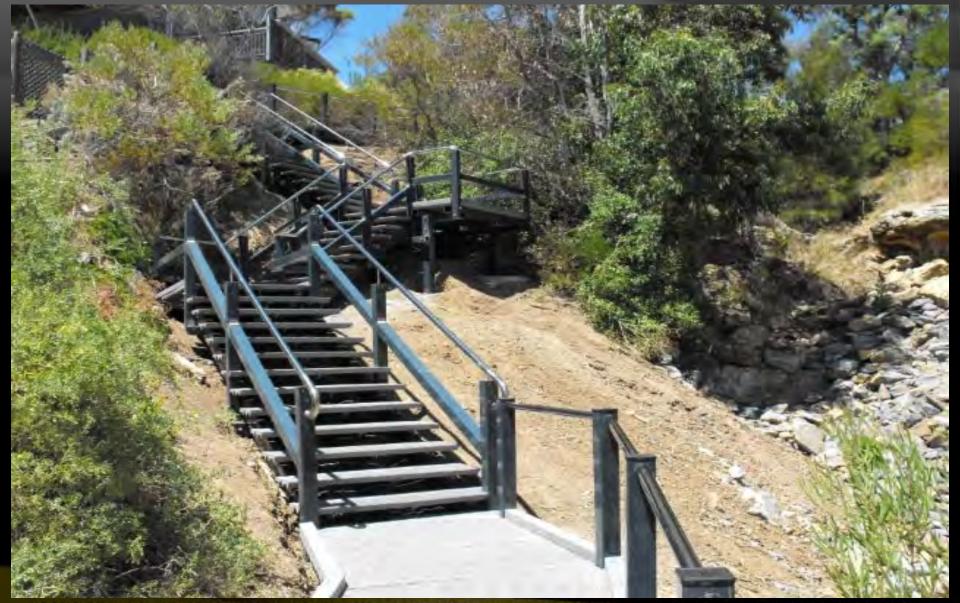
Shelters

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

www.wagnerscft.com

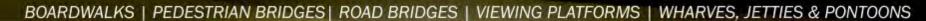
ISO 9001

Rottnest Island

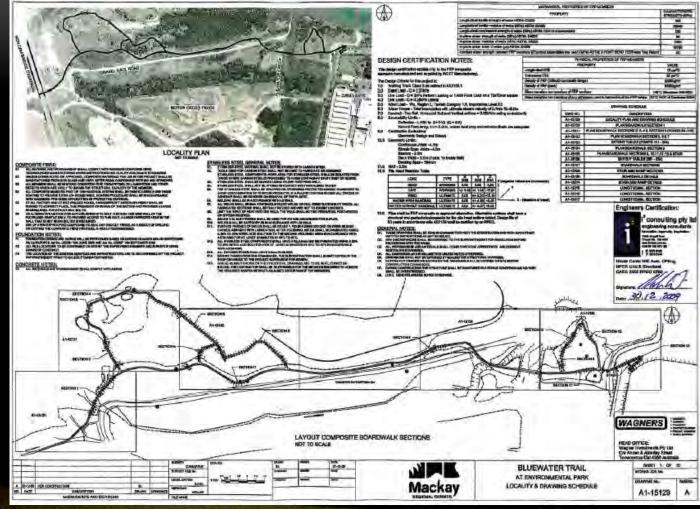


Stairs – Shelly Beach

www.wagnerscft.com



Boardwalk with a Difference



COMPOSITE FIBER TECHNOLOGIES

Trail Project – Forest Walk

Bluewater Trail Environmental Park

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Trail Project – Forest Walk

Bluewater
 Trail
 Environmental
 Park

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Trail Project – Forest Walk Bluewater Trail Environmental Park

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Trail Project – Forest Walk Bluewater Trail Environmental Park

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Trail Project – Forest Walk Bluewater Trail Environmental Park

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Pedestrian Bridges Over Difficult Locations

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Pedestrian Bridges over difficult locations

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Pile Driving Techniques

Larger Equipment

Small Equipment

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

www.wagnerscft.com

ISO 9001

Hastings NZ a difficult engineering challenge

The Requirement 1500 LF of Clip on Pedestrian Cycleway

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Shipped to NZ, Pre Cut – Pre Drilled ready for assembly by local contractor RED STEEL – Napier NZ

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Assembled by RED STEEL – Napier NZ

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Hastings - New Zealand Chesterhope Bridge Cycleway Upgrade

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Certified System 1006 OSI

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

BOARDWALKS | PEDESTRI

COMPOSITE FIBER TECHNOLOGIES

www.wagnerscft.com

RVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Road Bridges

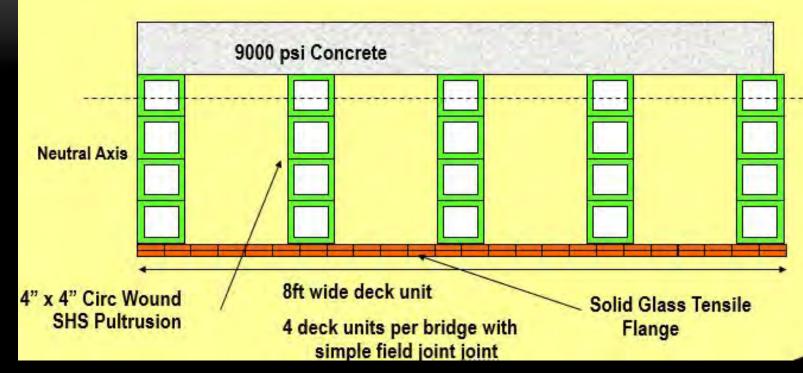
BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Road Bridge Replacement

- Wagners through R+D and IBRC Funding Supplied 5 Bridge Decks between 2004 and 2008.
- Each Bridge had its own challenges
 - New Oregon Road, Erie County, NY
 - Collins St, City of Hornell, NY
 - Bemus-Ellery Road Bridge, Chatauqua County, NY
 - English Run Road, Lycoming County, PA
 - PR-139 Bridge over Ausobo Creek, Ponce, Puerto Rico
- Each Bridge also went through the same Design / Validation Process
 - Proposed Section
 - Grillage Analysis
 - FEA Modelling
 - Prototype Manufacture and Testing
 - Manufacturing

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

New Oregon Road – Erie County


 Erie County Department of Public Works oversees 1200 lane mile of road, upon which 24 feet of snow falls every year. The county dumps 96,000 tons of de-icing salts on their roads each year.

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Proposed Section

- AASHTO HS25 Design Vehicle
- L/500 allowable deflection under Live Load

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

COMPOSITE FIBER TECHNOLOGIES

Today in NY

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Results of Observations

After 13 years of service the following observations are made:

- No deck surface deterioration
- No Corrosion of FRP materials
- No Structural failures
- No damage from debris (underside)
 Conclusion –

FRP Materials are living up to the reputation!

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Bridge Replacement

Manly Road Bridge

 Bridge Sections Shipped To Site And Set Into Place

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Bridge Replacement

Manly Road Bridge

Completed

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

COMPOSITE FIBER TECHNOLOGIES

Key Takeaways 100 year Design Life + <u>25-40 Years of low/ no maintenance</u> = Substantial ROI in about 10 years.

 Lightweight Materials Mean Lower Structure Cost And Lower Construction Costs

Inert Materials = Zero Environmental Effects

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Key Takeaways

Fiscally Responsible:

- 1:5 Ratio for replacement
 - Over a 100 year period, conservatively you will replace a wood boardwalk 5 times or every 1 boardwalk built with Fiberglass.
- Manpower:
 - Skilled crew and/or budget required for ongoing maintainance and replacement of deckboards, railings, pilings, etc.

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

Key Takeaways

Bottom Line:

Change your mindset and the mindset of your team.

Material longevity and lifecycle cost savings need to be considered when the opportunity for replacement arises.

BOARDWALKS | PEDESTRIAN BRIDGES | ROAD BRIDGES | VIEWING PLATFORMS | WHARVES, JETTIES & PONTOONS

